中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
3D Bio-Printing of CS/Gel/HA/Gr Hybrid Osteochondral Scaffolds

文献类型:期刊论文

作者Hu, Xueyan2; Man, Yuan2; Li, Wenfang2; Li, Liying2; Xu, Jie2; Parungao, Roxanne3; Wang, Yiwei3; Zheng, Shuangshuang4; Nie, Yi1,4; Liu, Tianqing2
刊名POLYMERS
出版日期2019-10-01
卷号11期号:10页码:16
关键词3d Printing Bio-ink Graphene Chitosan Gelatin Hyaluronic Acid Cartilage Repair
DOI10.3390/polym11101601
英文摘要

Cartilage is an important tissue contributing to the structure and function of support and protection in the human body. There are many challenges for tissue cartilage repair. However, 3D bio-printing of osteochondral scaffolds provides a promising solution. This study involved preparing bio-inks with different proportions of chitosan (Cs), Gelatin (Gel), and Hyaluronic acid (HA). The rheological properties of each bio-ink was used to identify the optimal bio-ink for printing. To improve the mechanical properties of the bio-scaffold, Graphene (GR) with a mass ratio of 0.024, 0.06, and 0.1% was doped in the bio-ink. Bio-scaffolds were prepared using 3D printing technology. The mechanical strength, water absorption rate, porosity, and degradation rate of the bio-scaffolds were compared to select the most suitable scaffold to support the proliferation and differentiation of cells. P3 Bone mesenchymal stem cells (BMSCs) were inoculated onto the bio-scaffolds to study the biocompatibility of the scaffolds. The results of SEM showed that the Cs/Gel/HA scaffolds with a GR content of 0, 0.024, 0.06, and 0.1% had a good three-dimensional porous structure and interpenetrating pores, and a porosity of more than 80%. GR was evenly distributed on the scaffold as observed by energy spectrum analyzer and polarizing microscope. With increasing GR content, the mechanical strength of the scaffold was enhanced, and pore walls became thicker and smoother. BMSCs were inoculated on the different scaffolds. The cells distributed and extended well on Cs/Gel/HA/GR scaffolds. Compared to traditional methods in tissue-engineering, this technique displays important advantages in simulating natural cartilage with the ability to finely control the mechanical and chemical properties of the scaffold to support cell distribution and proliferation for tissue repair.

WOS关键词Articular-cartilage Defects ; Chondrogenic Differentiation ; Tissue Constructs ; Drug-delivery ; Hydrogel ; Chitosan ; Nanomaterials ; Repair ; Therapy ; Matrix
资助项目National Natural Science Foundation of China[31670978/31370991/21676041] ; Fok Ying Tung Education Foundation[132027] ; State Key Laboratory of Fine Chemicals[KF1111] ; Natural Science Foundation of Liaoning[20180510028]
WOS研究方向Polymer Science
语种英语
出版者MDPI
WOS记录号WOS:000495382700070
资助机构National Natural Science Foundation of China ; Fok Ying Tung Education Foundation ; State Key Laboratory of Fine Chemicals ; Natural Science Foundation of Liaoning
源URL[http://ir.ipe.ac.cn/handle/122111/38931]  
专题中国科学院过程工程研究所
通讯作者Nie, Yi; Liu, Tianqing; Song, Kedong
作者单位1.Chinese Acad Sci, Inst Proc Engn, Key Lab Green Proc & Engn, Beijing 100190, Peoples R China
2.Dalian Univ Technol, Dalian R&D Ctr Stem Cell & Tissue Engn, State Key Lab Fine Chem, Dalian 116024, Peoples R China
3.Univ Sydney, ANZAC Res Inst, Burns Res Grp, Concord, NSW 2139, Australia
4.Zhengzhou Inst Emerging Ind Technol, Zhengzhou 450000, Henan, Peoples R China
推荐引用方式
GB/T 7714
Hu, Xueyan,Man, Yuan,Li, Wenfang,et al. 3D Bio-Printing of CS/Gel/HA/Gr Hybrid Osteochondral Scaffolds[J]. POLYMERS,2019,11(10):16.
APA Hu, Xueyan.,Man, Yuan.,Li, Wenfang.,Li, Liying.,Xu, Jie.,...&Song, Kedong.(2019).3D Bio-Printing of CS/Gel/HA/Gr Hybrid Osteochondral Scaffolds.POLYMERS,11(10),16.
MLA Hu, Xueyan,et al."3D Bio-Printing of CS/Gel/HA/Gr Hybrid Osteochondral Scaffolds".POLYMERS 11.10(2019):16.

入库方式: OAI收割

来源:过程工程研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。