中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
过臭氧化技术处理低浓度有机废水的过程强化及机理研究

文献类型:学位论文

作者郭壮
答辩日期2019-07-01
文献子类博士
授予单位中国科学院大学
导师曹宏斌
关键词过臭氧化技术,电化学-过臭氧化耦合,三电极体系旋转圆环盘装置,单原子催化剂,羟基自由基
学位专业环境工程
英文摘要

过臭氧化技术是一种典型的高级氧化技术,依靠O3与H2O2反应生成高活性的?OH对废水中有机污染物进行高效处理,然而该技术存在O2资源浪费,H2O2运输储存安全风险和酸性溶液降解效率低效等问题,严重制约着该技术的发展。利用电化学技术,非均相催化剂和等离子体技术强化过臭氧化技术,为开发新型高效过臭氧化技术提供了新思路。然而,电化学-过臭氧化技术虽实现H2O2的原位制备,但存在机理研究匮乏和O3利用率低等问题;非均相催化剂是解决过臭氧化技术在酸性溶液低效问题的重要途径,但由于体系复杂性,该研究仍处于空白;介质阻挡放电低温等离子体技术可同时实现O3和H2O2的原位制备,但过臭氧化效果不显著。本论文针对各强化路径中存在的问题分别进行研究,主要研究内容和结果如下:(1)搭建三电极体系旋转圆环盘装置,发现电化学-过臭氧化技术中存在协同效应。O3电还原原位产生的O2与本体溶液中O2一同电还原为H2O2,而电化学反应的发生导致电极附近OH-浓度增加,加速O3向H2O2转变,共同提升体系中H2O2产率,从而加速过臭氧化反应产生?OH,并与O3电还原产生的?OH协同作用于电化学-过臭氧化技术有机物的去除。利用电化学表征半定量分析出该技术在不同pH溶液中的羟基自由基产率,依次为碱性溶液>中性溶液>酸性溶液。(2)相比于块状g-C3N4和多孔g-C3N4,纳米片层g-C3N4与MWCNTs的复合材料具有最大的比表面积和含氮量以及最高的电子导电性。该材料不但具有电还原O2生成H2O2的性能而且具有较强的催化臭氧化活性,将该材料应用于电化学-过臭氧化技术中,明显增强草酸降解效率,说明在该技术中引入具有催化臭氧化活性的电极材料可提升废水处理效率。(3)首次发现C3N4-Mn/CNT非均相催化剂具有催化过臭氧化反应活性,可将电化学-过臭氧化技术中草酸的降解效率提升57.1倍。为了探究催化剂的催化机理,以C3N4-Mn催化剂为研究模型。通过球差电镜与同步辐射表征,发现催化剂为单原子Mn催化剂并以Mn-N4构型存在。自由基捕获实验与DFT计算共同揭示Mn-N4位点催化机理,具体为: Mn-N4位点对H2O2进行吸附并形成HOO-Mn-N4键,O3加速HOO-Mn-N4键的断裂形成HO2?和O3?-自由基,最终在与O3的链式反应中形成?OH。单原子Mn催化剂克服了过臭氧化反应必须由HO2-引发的缺点,进一步拓展了过臭氧化技术的应用范围。(4)介质阻挡放电低温等离子体装置中创新地引入炭黑电极可提升O3和H2O2产率,引入气液混合柱可加速O3溶解,并为过臭氧化反应提供场所,将低温等离子体装置中降解有机污染物的工作区间由放电区域转为气液混合柱,强化过臭氧化过程,进一步提升废水处理效率。;Peroxone process which relies on the reaction between O3 and H2O2 to generate highly reactive hydroxyl radical (?OH) is a typical advanced oxidation processes (AOPs) for wastewater treatment. However, this technology suffers from various problems, including the waste of O2 resource, the risk arising from the transportation and storage of H2O2, and the inefficient degradation efficiency in acidic solution, which seriously restricts its application. Via combining with electrochemical technology, heterogeneous catalyst or non-thermal plasma technology, it provides new solutions for the development of efficient peroxone technology. Although electro-peroxone process realizes the in-situ generation of H2O2, the deficiency of detailed reaction mechanism and low-utilization of O3 need to be explored. It is convinced that heterogeneous catalyst is the key method to resolve the inefficiency of peroxone process in acidic solution, but this study is still in the blank stage due to the complexity of the system. Dielectric barrier discharge non-thermal plasma technology possesses the advantage that it produces O3 and H2O2 simultaneously, but the defect of device confines the peroxone process. Aiming at solving the problems existing in various improvement measures, we achieve main conclusions as follows:(1) A three-electrode system equipped the rotating ring disk electrodes is established, and the synergy in electro-peroxone process is revealed. The in-situ generated O2 by O3 electrochemical reduction and O2 in bulk solution are reduced to form H2O2. Meanwhile, the increased OH- concentration near cathode, due to the electrochemical reaction on the electrode surface, accelerates the transformation of O3 to H2O2. These two pathways contribute to the higher amount of H2O2, thus promotes the peroxone process to generate ?OH. It combining with ?OH generated by O3 electrochemical reaction synergistically degrades the organic pollutants. In addition, the yield of ?OH in carious pH solution are semi-quantitative analyzed by electrochemical method, alkaline solution > neutral solution > acidic solution.(2) Compared with bulk-g-C3N4 and porous-g-C3N4, the material comprised of nanosheet-g-C3N4 and MWCNTs exhibits optimal specific surface, N element content and electronic conductivity. Besides transforming O2 to H2O2 via electrochemical reaction, this material possesses strong catalytic ozonation activity. Applied in the electro-peroxone process, it can obviously enhanced the degradation efficiency of oxalic acid. The result confirms that catalytic ozonation process is an important means to enhance the degradation efficiency in the electro-peroxone process.(3) C3N4-Mn/CNT heterogeneous catalyst significantly increases the degradation efficiency of oxalic acid by 57.1 times in electro-peroxone process. Comparison tests confirm that the catalyst possesses catalytic peroxone reaction activity. In order to explore the catalytic mechanism, the C3N4-Mn catalyst is used as the research model. By the characterization of HAADF-STEM and XAFS, it is found that this catalyst is single atom Mn catalyst existing in the form of Mn-N4 configuration. Both free radical capture experiment and DFT calculation reveal the catalytic mechanism of Mn-N4 site. Firstly, H2O2 is adsorbed on the Mn-N4 site to form HOO-Mn-N4 bond. Secondly, O3 promotes the cleavage of HOO-Mn-N4 bond to generate HO2? and O3?-. Finally, ?OH is formed by chain reactions of free radicals. Mn-N4 catalyst overcomes the defect of peroxone process which must be initiated by HO2-, and further expands the application scope of this technology.(4) In dielectric barrier discharge non-thermal plasma device, adding carbon electrode can efficiently increase the yield of O3 and H2O2, and gas-liquid mixing column can provide the reaction space for O3 and H2O2, which change the treatment area of organic pollutants from discharge zone to mixing column. These improvements significantly enhance the reaction efficiency between O3 and H2O2, thus increase the efficiency of wastewater treatment. 

语种中文
源URL[http://ir.ipe.ac.cn/handle/122111/40669]  
专题中国科学院过程工程研究所
推荐引用方式
GB/T 7714
郭壮. 过臭氧化技术处理低浓度有机废水的过程强化及机理研究[D]. 中国科学院大学. 2019.

入库方式: OAI收割

来源:过程工程研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。