CMOS Fixed Pattern Noise Removal Based on Low Rank Sparse Variational Method
文献类型:期刊论文
作者 | Zhang T(张涛)1,2,3![]() ![]() |
刊名 | APPLIED SCIENCES-BASEL
![]() |
出版日期 | 2020-06-01 |
卷号 | 10期号:11页码:26 |
关键词 | FPN low rank sparse total variation anisotropy characteristic |
DOI | 10.3390/app10113694 |
产权排序 | 第3完成单位 |
文献子类 | Article |
英文摘要 | Fixed pattern noise (FPN) has always been an important factor affecting the imaging quality of CMOS image sensor (CIS). However, the current scene-based FPN removal methods mostly focus on the image itself, and seldom consider the structure information of the FPN, resulting in various undesirable noise removal effects. This paper presents a scene-based FPN correction method: the low rank sparse variational method (LRSUTV). It combines not only the continuity of the image itself, but also the structural and statistical characteristics of the stripes. At the same time, the low frequency information of the image is combined to achieve adaptive adjustment of some parameters, which simplifies the process of parameter adjustment, to a certain extent. With the help of adaptive parameter adjustment strategy, LRSUTV shows good performance under different intensity of stripe noise, and has high robustness. |
学科主题 | 电子、通信与自动控制技术 |
URL标识 | 查看原文 |
出版地 | ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND |
WOS关键词 | REMOTE-SENSING IMAGES ; WAVELET |
资助项目 | National Natural Science Foundation of China[11573066] ; National Natural Science Foundation of China[11873091] ; Yunnan Province Basic Research Plan[2019FA001] |
WOS研究方向 | Chemistry ; Engineering ; Materials Science ; Physics |
语种 | 英语 |
WOS记录号 | WOS:000543385900031 |
出版者 | MDPI |
资助机构 | National Natural Science Foundation of China[11573066, 11873091] ; Yunnan Province Basic Research Plan[2019FA001] |
源URL | [http://ir.ynao.ac.cn/handle/114a53/23538] ![]() |
专题 | 天文技术实验室 云南天文台_抚仙湖太阳观测站 |
通讯作者 | Zhang T(张涛) |
作者单位 | 1.Key Laboratory of Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China 2.School of Optoelectronic Information, University of Electronic Science and Technology, Chengdu 611731, China 3.Astronomical Technology Laboratory, Yunnan Observatory, Chinese Academy of Sciences, Kunming 650216, China |
推荐引用方式 GB/T 7714 | Zhang T,Li, Xinyang,Li, Jianfeng,et al. CMOS Fixed Pattern Noise Removal Based on Low Rank Sparse Variational Method[J]. APPLIED SCIENCES-BASEL,2020,10(11):26. |
APA | Zhang T,Li, Xinyang,Li, Jianfeng,&Xu Z.(2020).CMOS Fixed Pattern Noise Removal Based on Low Rank Sparse Variational Method.APPLIED SCIENCES-BASEL,10(11),26. |
MLA | Zhang T,et al."CMOS Fixed Pattern Noise Removal Based on Low Rank Sparse Variational Method".APPLIED SCIENCES-BASEL 10.11(2020):26. |
入库方式: OAI收割
来源:云南天文台
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。