中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Strength prediction of similar materials to ionic rare earth ores based on orthogonal test and back propagation neural network

文献类型:期刊论文

作者Zhong, Wen; Deng, Yunchuan; Tenreiro Machado, J. A.; Zhang, Chao; Zhao, Kui; Wang, Xiaojun
刊名SOFT COMPUTING
出版日期2019
卷号23期号:19页码:9429-9437
关键词Back propagation neural network (BPNN) Orthogonal test Ionic rare earth (IRE) Similar materials (SM) Strength prediction
ISSN号1432-7643
DOI10.1007/s00500-019-03833-7
英文摘要This paper aims to predict the strength of materials similar to the ionic rare earth (IRE) ores [hereinafter referred as similar materials (SM)]. A 4 x Y x 2 back propagation neural network (BPNN) prediction model, based on 18 groups of samples of the SM with different mix proportions, was used to describe their strength. The BPNN modelling scheme includes four input layer neurons, representing the amounts of kaolinite, potassium feldspar, anorthose and mica, and two output layer neurons corresponding to the strength indices c and phi of the samples after 6 h leaching. Comparing the training and prediction errors, it is verified that the error in predicted strength is minimized when the number of hidden layer neurons Y equals 9. The correlation coefficient R of the prediction model is as high as 0.998, and the maximum relative errors of the strength indices (c and phi) are 4.11% and 4.26%, respectively. Orthogonal tests show that the BPNN is a reliable and accurate method to predict the strength of SM. Featuring uniform dispersion, comparability and nonlinear optimization, the proposed method sheds further light on the strength prediction of IRE ores.
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000485039900026
源URL[http://119.78.100.198/handle/2S6PX9GI/14877]  
专题岩土力学所知识全产出_期刊论文
国家重点实验室知识产出_期刊论文
作者单位1.Jiangxi Univ Sci & Technol, Sch Resources & Environm Engn, Ganzhou 341000, Peoples R China;
2.Chinese Acad Sci, Inst Rock & Soil Mech, State Key Lab Geomech & Geotech Engn, Beijing 430071, Peoples R China;
3.Chongyi Zhangyuan Tungsten Co Ltd, Ganzhou 341300, Peoples R China;
4.Polytech Porto, Inst Engn, Dept Elect Engn, P-4249015 Porto, Portugal
推荐引用方式
GB/T 7714
Zhong, Wen,Deng, Yunchuan,Tenreiro Machado, J. A.,et al. Strength prediction of similar materials to ionic rare earth ores based on orthogonal test and back propagation neural network[J]. SOFT COMPUTING,2019,23(19):9429-9437.
APA Zhong, Wen,Deng, Yunchuan,Tenreiro Machado, J. A.,Zhang, Chao,Zhao, Kui,&Wang, Xiaojun.(2019).Strength prediction of similar materials to ionic rare earth ores based on orthogonal test and back propagation neural network.SOFT COMPUTING,23(19),9429-9437.
MLA Zhong, Wen,et al."Strength prediction of similar materials to ionic rare earth ores based on orthogonal test and back propagation neural network".SOFT COMPUTING 23.19(2019):9429-9437.

入库方式: OAI收割

来源:武汉岩土力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。