Moire engineering of electronic phenomena in correlated oxides
文献类型:期刊论文
作者 | Chen, Xinzhong5; Fan, Xiaodong6,7; Li, Lin6,7; Zhang, Nan6,7; Niu, Zhijing5; Guo, Tengfei8; Xu, Suheng5; Xu, Han2,6,7,9; Wang, Dongli6,7; Zhang, Huayang6,7 |
刊名 | NATURE PHYSICS
![]() |
出版日期 | 2020-04-06 |
ISSN号 | 1745-2473 |
DOI | 10.1038/s41567-020-0865-1 |
通讯作者 | Li, Lin(lilin@ustc.edu.cn) ; Basov, D. N.(db3056@columbia.edu) ; Liu, Mengkun(mengkun.liu@stonybrook.edu) ; Zeng, Changgan(cgzeng@ustc.edu.cn) |
英文摘要 | Moire engineering has rapidly gained currency as a means to manipulate electronic states of matter in van der Waals heterostructures. Now, the feat is achieved in epitaxially grown oxide heterostructures, thus opening up fresh opportunities for strongly correlated electronic systems. Moire engineering has recently emerged as an effective approach to control quantum phenomena in condensed matter systems(1-6). In van der Waals heterostructures, moire patterns can be formed by lattice misorientation between adjacent atomic layers, creating long-range electronic order. Moire engineering has so far been executed solely in stacked van der Waals multilayers. Here we describe electronic moire patterns in films of a prototypical magnetoresistive oxide, La0.67Sr0.33MnO3, epitaxially grown on LaAlO3 substrates. Using scanning probe nanoimaging, we observe microscopic moire profiles attributed to the coexistence and interaction of two distinct incommensurate patterns of strain modulation within these films. The net effect is that both the electronic conductivity and ferromagnetism of La0.67Sr0.33MnO3 are modulated by periodic moire textures extending over mesoscopic scales. Our work provides a potential route to achieving spatially patterned electronic textures on demand in strained epitaxial materials. |
WOS关键词 | THIN-FILMS ; TRANSITION ; STRAIN ; MAGNETORESISTANCE ; LAALO3 |
资助项目 | National Science Foundation[DMR-1904576] ; RISE2 node of NASA's Solar System Exploration Research Virtual Institute under NASA[80NSSC19MO2015] ; National Natural Science Foundation of China[11974324] ; National Natural Science Foundation of China[11804326] ; National Natural Science Foundation of China[U1832151] ; National Natural Science Foundation of China[11675179] ; National Natural Science Foundation of China[51627901] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDC07010000] ; National Key Research and Development Programme of China[2017YFA0403600] ; National Key Research and Development Programme of China[2017YFA0402903] ; Anhui Initiative in Quantum Information Technologies[AHY170000] ; Hefei Science Centre CAS[2018HSC-UE014] ; Fundamental Research Funds for the Central Universities[WK2030040087] ; Basic Energy Sciences programme of the Department of Energy[DE-SC 0012375] ; ARO[W911NF-17-1-0543] |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000523952700004 |
出版者 | NATURE PUBLISHING GROUP |
资助机构 | National Science Foundation ; RISE2 node of NASA's Solar System Exploration Research Virtual Institute under NASA ; National Natural Science Foundation of China ; Strategic Priority Research Program of Chinese Academy of Sciences ; National Key Research and Development Programme of China ; Anhui Initiative in Quantum Information Technologies ; Hefei Science Centre CAS ; Fundamental Research Funds for the Central Universities ; Basic Energy Sciences programme of the Department of Energy ; ARO |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/103481] ![]() |
专题 | 中国科学院合肥物质科学研究院 |
通讯作者 | Li, Lin; Basov, D. N.; Liu, Mengkun; Zeng, Changgan |
作者单位 | 1.Flatiron Inst, Ctr Computat Quantum Phys, New York, NY USA 2.Univ Sci & Technol China, CAS Key Lab Mat Energy Convers, Hefei, Anhui, Peoples R China 3.Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA 4.Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA 5.SUNY Stony Brook, Dept Phys & Astron, Stony Brook, NY 11794 USA 6.Univ Sci & Technol China, Int Ctr Quantum Design Funct Mat, Hefei Natl Lab Phys Sci Microscale,Dept Phys, CAS Key Lab Strongly Coupled Quantum Matter Phys, Hefei, Peoples R China 7.Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei, Peoples R China 8.Chinese Acad Sci, Anhui Prov Key Lab Condensed Matter Phys Extreme, High Magnet Field Lab, Hefei, Anhui, Peoples R China 9.Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei, Anhui, Peoples R China |
推荐引用方式 GB/T 7714 | Chen, Xinzhong,Fan, Xiaodong,Li, Lin,et al. Moire engineering of electronic phenomena in correlated oxides[J]. NATURE PHYSICS,2020. |
APA | Chen, Xinzhong.,Fan, Xiaodong.,Li, Lin.,Zhang, Nan.,Niu, Zhijing.,...&Zeng, Changgan.(2020).Moire engineering of electronic phenomena in correlated oxides.NATURE PHYSICS. |
MLA | Chen, Xinzhong,et al."Moire engineering of electronic phenomena in correlated oxides".NATURE PHYSICS (2020). |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。