Robust enhanced hydrogen production at acidic conditions over molybdenum oxides-stabilized ultrafine palladium electrocatalysts
文献类型:期刊论文
| 作者 | Sun, Ji1,2; Zhang, Xian1 ; Jin, Meng1,2; Xiong, Qizhong1; Wang, Guozhong1 ; Zhang, Haimin1; Zhao, Huijun1,3
|
| 刊名 | NANO RESEARCH
![]() |
| 出版日期 | 2020-09-29 |
| 关键词 | MoOx Pd nanoparticles electrocatalysts hydrogen evolution reaction |
| ISSN号 | 1998-0124 |
| DOI | 10.1007/s12274-020-3083-3 |
| 通讯作者 | Zhang, Haimin(zhanghm@issp.ac.cn) ; Zhao, Huijun(h.zhao@griffith.edu.au) |
| 英文摘要 | Electrochemical water splitting is quite seductive for eco-friendly hydrogen fuel energy production, however, the attainment of highly efficient, durable, and cheap catalysts for the hydrogen evolution reaction (HER) remains challenging. In this study, molybdenum oxides stabilized palladium nanoparticle catalysts (MoOx-Pd) arein situprepared on commercial carbon cloth (CC) by the facile two-step method of dip-coating and electrochemical reduction. As a self-supported Pd-based catalyst electrode, the MoOx-Pd/CC presents a competitive Tafel slope of 45.75 mVdec(-1), an ultralow overpotential of 25 mV, and extremely long cycling durability (one week) in 0.5 M H2SO4 electrolyte, superior to unmodified Pd catalysts and comparable to commercial Pt mesh electrode. On the one hand, the introduction of MoOx can inhibit the growth of Pd particles to obtain ultrafine Pd nanoparticles, thus exposing more available active sites. On the other hand, density functional theory (DFT) calculation revealed that MoOx on the surface of Pd metal can regulate the electronic structure of Pd metal and enhance its intrinsic catalytic activity of HER. This work suggests that transitional metal nanoparticles stabilized by molybdenum oxides are hopeful approaches for obtaining fruitful hydrogen-producing electrocatalysts. |
| WOS关键词 | EVOLUTION REACTION ; OXYGEN EVOLUTION ; PLATINUM ; CATALYSTS ; DEHYDROGENATION ; NANOPARTICLE ; REDUCTION ; OXIDATION ; VACANCIES ; COMOO4 |
| 资助项目 | Natural Science Foundation of China[51902312] ; Natural Science Foundation of China[51672277] ; Anhui Provincial Natural Science Foundation[1908085QB83] ; China Postdoctoral Science Foundation[2019M652224] ; CAS Pioneer Hundred Talents Program ; CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, China |
| WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics |
| 语种 | 英语 |
| WOS记录号 | WOS:000573764700002 |
| 出版者 | TSINGHUA UNIV PRESS |
| 资助机构 | Natural Science Foundation of China ; Anhui Provincial Natural Science Foundation ; China Postdoctoral Science Foundation ; CAS Pioneer Hundred Talents Program ; CAS/SAFEA International Partnership Program for Creative Research Teams of Chinese Academy of Sciences, China |
| 源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/104329] ![]() |
| 专题 | 中国科学院合肥物质科学研究院 |
| 通讯作者 | Zhang, Haimin; Zhao, Huijun |
| 作者单位 | 1.Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys,Ctr Environm & Energy Nanomat, Anhui Key Lab Nanomat & Nanotechnol,CAS Ctr Excel, Hefei 230031, Peoples R China 2.Univ Sci & Technol China, Hefei 230026, Peoples R China 3.Griffith Univ, Ctr Clean Environm & Energy, Gold Coast Campus, Southport, Qld 4222, Australia |
| 推荐引用方式 GB/T 7714 | Sun, Ji,Zhang, Xian,Jin, Meng,et al. Robust enhanced hydrogen production at acidic conditions over molybdenum oxides-stabilized ultrafine palladium electrocatalysts[J]. NANO RESEARCH,2020. |
| APA | Sun, Ji.,Zhang, Xian.,Jin, Meng.,Xiong, Qizhong.,Wang, Guozhong.,...&Zhao, Huijun.(2020).Robust enhanced hydrogen production at acidic conditions over molybdenum oxides-stabilized ultrafine palladium electrocatalysts.NANO RESEARCH. |
| MLA | Sun, Ji,et al."Robust enhanced hydrogen production at acidic conditions over molybdenum oxides-stabilized ultrafine palladium electrocatalysts".NANO RESEARCH (2020). |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


