Geometric field theory and weak Euler-Lagrange equation for classical relativistic particle-field systems
文献类型:期刊论文
作者 | Fan, Peifeng2,3; Qin, Hong1,4,5; Liu, Jian4; Xiang, Nong2,5; Yu, Zhi2,5![]() |
刊名 | FRONTIERS OF PHYSICS
![]() |
出版日期 | 2018-08-01 |
卷号 | 13期号:4页码:12 |
关键词 | relativistic particle-field system different manifolds mass-shell constraint geometric weak Euler-Lagrange equation symmetry conservation laws |
ISSN号 | 2095-0462 |
DOI | 10.1007/s11467-018-0793-z |
英文摘要 | A manifestly covariant, or geometric, field theory of relativistic classical particle-field systems is developed. The connection between the space-time symmetry and energy-momentum conservation laws of the system is established geometrically without splitting the space and time coordinates; i.e., space-time is treated as one entity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that the particles and the field reside on different manifolds. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of the electromagnetic fields and also a functional of the particles' world lines. The other difficulty associated with the geometric setting results from the mass-shell constraint. The standard Euler-Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell constraint is imposed. For the particle-field system, the geometric EL equation is further generalized into a weak geometric EL equation for particles. With the EL equation for the field and the geometric weak EL equation for particles, the symmetries and conservation laws can be established geometrically. A geometric expression for the particle energy-momentum tensor is derived for the first time, which recovers the non-geometric form in the literature for a chosen coordinate system. |
WOS关键词 | STATISTICAL-MECHANICS ; COVARIANT ; TRANSPORT ; PLASMA |
资助项目 | National Magnetic Confinement Fusion Energy Research Project[2015GB111003] ; National Natural Science Foundation of China[NSFC-11575185] ; National Natural Science Foundation of China[11575186] ; National Magnetic Confinement Fusion Energy Research Project[2014GB124005] ; National Magnetic Confinement Fusion Energy Research Project[2013GB111002B] ; National Natural Science Foundation of China[11305171] ; JSPS-NRF-NSFC[11261140328] ; Key Research Program of Frontier Sciences CAS[QYZDB-SSW-SYS004] ; Geo-Algorithmic Plasma Simulator (GAPS) Project |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000433428500009 |
出版者 | HIGHER EDUCATION PRESS |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/37127] ![]() |
专题 | 合肥物质科学研究院_中科院等离子体物理研究所 |
通讯作者 | Qin, Hong |
作者单位 | 1.Princeton Univ, Plasma Phys Lab, Princeton, NJ 08544 USA 2.Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Anhui, Peoples R China 3.Univ Sci & Technol China, Sci Isl Branch, Grad Sch, Hefei 230031, Anhui, Peoples R China 4.Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China 5.Chinese Acad Sci, Ctr Magnet Fus Theory, Hefei 230031, Anhui, Peoples R China |
推荐引用方式 GB/T 7714 | Fan, Peifeng,Qin, Hong,Liu, Jian,et al. Geometric field theory and weak Euler-Lagrange equation for classical relativistic particle-field systems[J]. FRONTIERS OF PHYSICS,2018,13(4):12. |
APA | Fan, Peifeng,Qin, Hong,Liu, Jian,Xiang, Nong,&Yu, Zhi.(2018).Geometric field theory and weak Euler-Lagrange equation for classical relativistic particle-field systems.FRONTIERS OF PHYSICS,13(4),12. |
MLA | Fan, Peifeng,et al."Geometric field theory and weak Euler-Lagrange equation for classical relativistic particle-field systems".FRONTIERS OF PHYSICS 13.4(2018):12. |
入库方式: OAI收割
来源:合肥物质科学研究院
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。