中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm

文献类型:期刊论文

作者Sun, Guo-Dong1,2; Qin, Lai-An1; Hou, Zai-Hong1; Jing, Xu1; He, Feng1; Tan, Feng-Fu1; Zhang, Si-Long1; Zhang, Shou-Chuan1
刊名CHINESE PHYSICS B
出版日期2019-02-01
卷号28期号:2页码:5
关键词visibility neural network lidar signals extinction coefficient
ISSN号1674-1056
DOI10.1088/1674-1056/28/2/024213
英文摘要

Visibility is an important atmospheric parameter that is gaining increasing global attention. This study introduces a back-propagation neural network method based on genetic algorithm optimization to obtain visibility directly using light detection and ranging (lidar) signals instead of acquiring extinction coefficient. We have validated the performance of the novel method by comparing it with the traditional inversion method, the back-propagation (BP) neural network method, and the Belfort, which is used as a standard value. The mean square error (MSE) and mean absolute percentage error (MAPE) values of the genetic algorithm-optimized back propagation (GABP) method are located in the range of 0.002 km(2)-0.005 km(2) and 1 %-3%, respectively. However, the MSE and MAPE values of the traditional inversion method and the BP method are significantly higher than those of the GABP method. Our results indicate that the proposed algorithm achieves better performance and can be used as a valuable new approach for visibility estimation.

WOS关键词ATMOSPHERIC VISIBILITY ; INVERSION ; WIND
资助项目National Natural Science Foundation of China[41405014]
WOS研究方向Physics
语种英语
WOS记录号WOS:000458917000013
出版者IOP PUBLISHING LTD
资助机构National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China
源URL[http://ir.hfcas.ac.cn:8080/handle/334002/42089]  
专题合肥物质科学研究院_中科院安徽光学精密机械研究所
通讯作者Qin, Lai-An
作者单位1.Univ Sci & Technol China, Grad Sch, Sci Isl Branch, Hefei 230031, Peoples R China
2.Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Key Lab Atmospher Opt, Hefei 230031, Peoples R China
推荐引用方式
GB/T 7714
Sun, Guo-Dong,Qin, Lai-An,Hou, Zai-Hong,et al. Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm[J]. CHINESE PHYSICS B,2019,28(2):5.
APA Sun, Guo-Dong.,Qin, Lai-An.,Hou, Zai-Hong.,Jing, Xu.,He, Feng.,...&Zhang, Shou-Chuan.(2019).Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm.CHINESE PHYSICS B,28(2),5.
MLA Sun, Guo-Dong,et al."Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm".CHINESE PHYSICS B 28.2(2019):5.

入库方式: OAI收割

来源:合肥物质科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。