Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm
文献类型:期刊论文
作者 | Sun, Guo-Dong1,2; Qin, Lai-An1![]() ![]() ![]() ![]() ![]() |
刊名 | CHINESE PHYSICS B
![]() |
出版日期 | 2019-02-01 |
卷号 | 28期号:2页码:5 |
关键词 | visibility neural network lidar signals extinction coefficient |
ISSN号 | 1674-1056 |
DOI | 10.1088/1674-1056/28/2/024213 |
英文摘要 | Visibility is an important atmospheric parameter that is gaining increasing global attention. This study introduces a back-propagation neural network method based on genetic algorithm optimization to obtain visibility directly using light detection and ranging (lidar) signals instead of acquiring extinction coefficient. We have validated the performance of the novel method by comparing it with the traditional inversion method, the back-propagation (BP) neural network method, and the Belfort, which is used as a standard value. The mean square error (MSE) and mean absolute percentage error (MAPE) values of the genetic algorithm-optimized back propagation (GABP) method are located in the range of 0.002 km(2)-0.005 km(2) and 1 %-3%, respectively. However, the MSE and MAPE values of the traditional inversion method and the BP method are significantly higher than those of the GABP method. Our results indicate that the proposed algorithm achieves better performance and can be used as a valuable new approach for visibility estimation. |
WOS关键词 | ATMOSPHERIC VISIBILITY ; INVERSION ; WIND |
资助项目 | National Natural Science Foundation of China[41405014] |
WOS研究方向 | Physics |
语种 | 英语 |
WOS记录号 | WOS:000458917000013 |
出版者 | IOP PUBLISHING LTD |
资助机构 | National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China ; National Natural Science Foundation of China |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/42089] ![]() |
专题 | 合肥物质科学研究院_中科院安徽光学精密机械研究所 |
通讯作者 | Qin, Lai-An |
作者单位 | 1.Univ Sci & Technol China, Grad Sch, Sci Isl Branch, Hefei 230031, Peoples R China 2.Chinese Acad Sci, Anhui Inst Opt & Fine Mech, Key Lab Atmospher Opt, Hefei 230031, Peoples R China |
推荐引用方式 GB/T 7714 | Sun, Guo-Dong,Qin, Lai-An,Hou, Zai-Hong,et al. Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm[J]. CHINESE PHYSICS B,2019,28(2):5. |
APA | Sun, Guo-Dong.,Qin, Lai-An.,Hou, Zai-Hong.,Jing, Xu.,He, Feng.,...&Zhang, Shou-Chuan.(2019).Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm.CHINESE PHYSICS B,28(2),5. |
MLA | Sun, Guo-Dong,et al."Feasibility analysis for acquiring visibility based on lidar signal using genetic algorithm-optimized back propagation algorithm".CHINESE PHYSICS B 28.2(2019):5. |
入库方式: OAI收割
来源:合肥物质科学研究院
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。