中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system

文献类型:期刊论文

作者Chen, Zhongfei1; Zhou, Binzhen1,2; Zhang, Liang1; Li, Can1; Zang, Jun3; Zheng, Xiongbo4; Xu, Jianan5; Zhang, Wanchao6
刊名ENERGY
出版日期2018-12-15
卷号165页码:1008-1020
ISSN号0360-5442
关键词Wave energy converter Dual-resonance Built-in power take-off system Viscous correction Motion response Capture width ratio
DOI10.1016/j.energy.2018.09.094
通讯作者Zhou, Binzhen(zhoubinzhen@hrbeu.edu.cn) ; Zhang, Liang(zhangliang@hrbeu.edu.cn)
英文摘要A new concept of point-absorber wave energy converter (WEC) with a waterproof outer-floater and a built-in power take-off (BI-PTO) mechanism, named Dual-Resonance WEC (DR-WEC), is put forward and investigated by experiments and numerical simulations. The BI-PTO mechanism includes spring, sliding-mass and damping systems, where the spring system is the most complicated and should be designed specially. A 1:10 scale model is designed. The mechanical performance of the BI-PTO system is investigated by a bench test. The results have shown that the design is feasible, and the added inertia effect of the BI-PTO has a negative influence on the power output. The average mechanical efficiency of the BI-PTO is 65.8% with maximum up to 80.0%. The motion and power responses of the DR-WEC are studied by a wave tank experiment and a linear numerical model with corrected mechanical added mass and viscosity. The viscous added mass and damping correction coefficients are obtained by a free decay test. The good agreement between the experimental measurements and numerical simulations has indicated that the present numerical model with corrections is of enough accuracy and the effects of mooring system and other degree of freedoms on the heave motion and power responses can be ignored. (C) 2018 Elsevier Ltd. All rights reserved.
WOS关键词PERFORMANCE ; OPTIMIZATION ; BREAKWATER
资助项目National Natural Science Foundation of UK-China International Cooperation (NSFC-EPSRC/NERC)[51761135013] ; National Natural Science Foundation of China[51409066] ; National Natural Science Foundation of China[51579055] ; High Technology Ship Scientific Research Project from Ministry of Industry and Information Technology of the People's Republic of China-Floating Security Platform Project[201622] ; Fundamental Research Fund for the Central University[HEUCF180104] ; Fundamental Research Fund for the Central University[HEUCFP201809] ; Open Fund of Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences[Y707k51001] ; China Scholarship Council (the International Clean Energy Talent Programme, 2017)
WOS研究方向Thermodynamics ; Energy & Fuels
语种英语
出版者PERGAMON-ELSEVIER SCIENCE LTD
WOS记录号WOS:000450377000075
资助机构National Natural Science Foundation of UK-China International Cooperation (NSFC-EPSRC/NERC) ; National Natural Science Foundation of China ; High Technology Ship Scientific Research Project from Ministry of Industry and Information Technology of the People's Republic of China-Floating Security Platform Project ; Fundamental Research Fund for the Central University ; Open Fund of Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences ; China Scholarship Council (the International Clean Energy Talent Programme, 2017)
源URL[http://ir.giec.ac.cn/handle/344007/24265]  
专题中国科学院广州能源研究所
通讯作者Zhou, Binzhen; Zhang, Liang
作者单位1.Harbin Engn Univ, Coll Shipbldg Engn, Harbin 150001, Heilongjiang, Peoples R China
2.Chinese Acad Sci, Guangzhou Inst Energy Convers, Key Lab Renewable Energy, Guangzhou 510640, Guangdong, Peoples R China
3.Univ Bath, Dept Architecture & Civil Engn, Bath BA2 7AY, Avon, England
4.Harbin Engn Univ, Coll Sci, Harbin 150001, Heilongjiang, Peoples R China
5.Harbin Engn Univ, Coll Mech & Elect Engn, Harbin 150001, Heilongjiang, Peoples R China
6.Jiangsu Univ Sci & Technol, Sch Naval Struct & Ocean Engn, Zhenjiang 212003, Peoples R China
推荐引用方式
GB/T 7714
Chen, Zhongfei,Zhou, Binzhen,Zhang, Liang,et al. Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system[J]. ENERGY,2018,165:1008-1020.
APA Chen, Zhongfei.,Zhou, Binzhen.,Zhang, Liang.,Li, Can.,Zang, Jun.,...&Zhang, Wanchao.(2018).Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system.ENERGY,165,1008-1020.
MLA Chen, Zhongfei,et al."Experimental and numerical study on a novel dual-resonance wave energy converter with a built-in power take-off system".ENERGY 165(2018):1008-1020.

入库方式: OAI收割

来源:广州能源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。