Extracting soil salinization information with a fractional-order filtering algorithm and grid-search support vector machine (GS-SVM) model
文献类型:期刊论文
作者 | Wang, Xiaoping1,6; Zhang, Fei2,6; Kung, Hsiang-te5; Johnson, Verner Carl4; Latif, Aamir3 |
刊名 | INTERNATIONAL JOURNAL OF REMOTE SENSING
![]() |
出版日期 | 2019-08-16 |
页码 | 21 |
ISSN号 | 0143-1161 |
DOI | 10.1080/01431161.2019.1654142 |
通讯作者 | Zhang, Fei(zhangfei3s@163.com) |
英文摘要 | The remote sensing information on the extraction method is of great importance to improve the accuracy and efficiency of soil salinization information. The objective of this study is to develop remote sensing extraction techniques to improve soil salinization maps. The following procedures were used in this study: (1) developed a fractional-order algorithm-based methodology of filter from high-resolution remote sensing imagery (Sentinel-2 MSI); (2) investigated the changing trend of image under different order filters; and (3) used a grid-search algorithm-support vector machines (GS-SVM) classification to employ extraction information of soil salinization. The results showed that the Fractional-order filter method outperformed the integer derivative in extracted information of soil salinization. In comparison of the classification accuracy between fractional-order processing algorithm and integer-order image processing algorithm, the fractional order has improved remarkably. The optimal classification model was 0.6 order, 0.8 order, 1.4 order, 1.6 order, and 1.8 order models. The overall accuracy and kappa coefficient (kappa) of these models are 91.90% and 0.90, respectively. Analysing and comparing between soil salt index and filtering algorithm (1.2 order), the researchers found that the classification results of the two methods are similar. In general, this method can successfully extract soil salinization information in dry regions. |
WOS关键词 | NATIONAL NATURE-RESERVE ; EBINUR LAKE ; SPATIOTEMPORAL FUSION ; LAND-COVER ; CLASSIFICATION ; SALINITY ; CHINA ; SYSTEM ; IMAGES ; BASIN |
资助项目 | Xinjiang Local Outstanding Young Talent Cultivation Project of the National Natural Science Foundation of China[U1503302] ; National Natural Science Foundation of China[41361045] ; Tianshan talent project of Xinjiang Uygur Autonomous region[400070010209] |
WOS研究方向 | Remote Sensing ; Imaging Science & Photographic Technology |
语种 | 英语 |
WOS记录号 | WOS:000480919800001 |
出版者 | TAYLOR & FRANCIS LTD |
资助机构 | Xinjiang Local Outstanding Young Talent Cultivation Project of the National Natural Science Foundation of China ; National Natural Science Foundation of China ; Tianshan talent project of Xinjiang Uygur Autonomous region |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/68941] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Zhang, Fei |
作者单位 | 1.Nanjing Univ, Int Inst Earth Syst Sci, Nanjing, Jiangsu, Peoples R China 2.Xinjiang Univ, Minist Educ, Key Lab Oasis Ecol, Urumqi, Peoples R China 3.Univ Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China 4.Colorado Mesa Univ, Dept Phys & Environm Sci, Grand Junction, CO USA 5.Univ Memphis, Dept Earth Sci, Memphis, TN 38152 USA 6.Xinjiang Univ, Coll Resources & Environm Sci, Key Lab Smart City & Environm Modelling Higher Ed, Urumqi 830046, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Xiaoping,Zhang, Fei,Kung, Hsiang-te,et al. Extracting soil salinization information with a fractional-order filtering algorithm and grid-search support vector machine (GS-SVM) model[J]. INTERNATIONAL JOURNAL OF REMOTE SENSING,2019:21. |
APA | Wang, Xiaoping,Zhang, Fei,Kung, Hsiang-te,Johnson, Verner Carl,&Latif, Aamir.(2019).Extracting soil salinization information with a fractional-order filtering algorithm and grid-search support vector machine (GS-SVM) model.INTERNATIONAL JOURNAL OF REMOTE SENSING,21. |
MLA | Wang, Xiaoping,et al."Extracting soil salinization information with a fractional-order filtering algorithm and grid-search support vector machine (GS-SVM) model".INTERNATIONAL JOURNAL OF REMOTE SENSING (2019):21. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。