中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
responsesofriverrunofftoclimatechangebasedonnonlinearmixedregressionmodelinchaoheriverbasinofhebeiprovincechina

文献类型:期刊论文

作者Jiang Yan2; Liu Changming2; Zheng Hongxing3; Li Xuyong4; Wu Xianing1
刊名chinesegeographicalscience
出版日期2010
卷号20期号:2页码:152
ISSN号1002-0063
英文摘要Taking the nonlinear nature of runoff system into account, and combining auto-regression method and multi-regression method, a Nonlinear Mixed Regression Model (NMR) was established to analyze the impact of temperature and precipitation changes on annual river runoff process. The model was calibrated and verified by using BP neural network with observed meteorological and runoff data from Daiying Hydrological Station in the Chaohe River of Hebei Province in 1956-2000. Compared with auto-regression model, linear multi-regression model and linear mixed regression model, NMR can improve forecasting precision remarkably. Therefore, the simulation of climate change scenarios was carried out by NMR. The results show that the nonlinear mixed regression model can simulate annual river runoff well.
语种英语
源URL[http://ir.igsnrr.ac.cn/handle/311030/127341]  
专题中国科学院地理科学与资源研究所
作者单位1.Sinohydro Corporation Limited
2.College of Water Sciences,Beijing Normal University
3.Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences
4.中国科学院生态环境研究中心
推荐引用方式
GB/T 7714
Jiang Yan,Liu Changming,Zheng Hongxing,et al. responsesofriverrunofftoclimatechangebasedonnonlinearmixedregressionmodelinchaoheriverbasinofhebeiprovincechina[J]. chinesegeographicalscience,2010,20(2):152.
APA Jiang Yan,Liu Changming,Zheng Hongxing,Li Xuyong,&Wu Xianing.(2010).responsesofriverrunofftoclimatechangebasedonnonlinearmixedregressionmodelinchaoheriverbasinofhebeiprovincechina.chinesegeographicalscience,20(2),152.
MLA Jiang Yan,et al."responsesofriverrunofftoclimatechangebasedonnonlinearmixedregressionmodelinchaoheriverbasinofhebeiprovincechina".chinesegeographicalscience 20.2(2010):152.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。