中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data

文献类型:期刊论文

作者Jiang, Hou2,3; Lu, Ning1,2; Qin, Jun4; Tang, Wenjun4; Yao, Ling1,2
刊名RENEWABLE & SUSTAINABLE ENERGY REVIEWS
出版日期2019-10-01
卷号114页码:13
关键词Global solar radiation Convolutional neural network Deep learning Geostationary satellite Temporal and spatial variations
ISSN号1364-0321
DOI10.1016/j.rser.2019.109327
通讯作者Lu, Ning(lvn@lreis.ac.cn)
英文摘要To apply deep learning technique for estimating hourly global solar radiation (GSR) from geostationary satellite observations, a hybrid deep network is proposed, relying on convolutional neural network (CNN) to extract spatial pattern from satellite imagery, multi-layer perceptron (MLP) to link the abstract patterns and additional time/location information to target hourly GSR. Its representative advantage lies in the ability to characterize changeable cloud morphology and simulate complex non-linear relationships. The deep network is trained using ground measured GSR values at 90 Chinese radiation stations in 2008 as well as the radiative transfer model simulation at the top of Mt. Everest which serves as constraints of extrapolation for high elevation regions. The extensibility of trained network is validated at 5 independent stations in 2008, yielding an overall coefficient of determination (R-2) of 0.82, and at all stations in 2007 along with an R-2 of 0.88. Comparative experiments confirm that the combination of spatial pattern and point information can lead to more accurate estimation of hourly GSR, achieving a minimum root mean square error (RMSE) of 84.18 W/m(2) (0.30 MJ/m(2)), 1.92 MJ/m(2) and 1.08 MJ/m(2) in hourly, daily total and monthly total scales, respectively. Moreover, the deep network is capable of mapping spatially continuous hourly GSR which reflects the regional differences and reproduce the diurnal cycles of solar radiation properly.
WOS关键词ARTIFICIAL NEURAL-NETWORK ; INTELLIGENCE TECHNIQUES ; IRRADIANCE ; ENERGY ; MODEL ; PREDICTION
资助项目National Natural Science Foundation of China[41890854]
WOS研究方向Science & Technology - Other Topics ; Energy & Fuels
语种英语
WOS记录号WOS:000488871200004
出版者PERGAMON-ELSEVIER SCIENCE LTD
资助机构National Natural Science Foundation of China
源URL[http://ir.igsnrr.ac.cn/handle/311030/129492]  
专题中国科学院地理科学与资源研究所
通讯作者Lu, Ning
作者单位1.Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China
2.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
3.Univ Chinese Acad Sci, Coll Resources & Environm, Beijing 100049, Peoples R China
4.Chinese Acad Sci, Inst Tibetan Plateau Res, Key Lab Tibetan Environm Changes & Land Surface P, Beijing 100085, Peoples R China
推荐引用方式
GB/T 7714
Jiang, Hou,Lu, Ning,Qin, Jun,et al. A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data[J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS,2019,114:13.
APA Jiang, Hou,Lu, Ning,Qin, Jun,Tang, Wenjun,&Yao, Ling.(2019).A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data.RENEWABLE & SUSTAINABLE ENERGY REVIEWS,114,13.
MLA Jiang, Hou,et al."A deep learning algorithm to estimate hourly global solar radiation from geostationary satellite data".RENEWABLE & SUSTAINABLE ENERGY REVIEWS 114(2019):13.

入库方式: OAI收割

来源:地理科学与资源研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。