A Hybrid Markov and LSTM Model for Indoor Location Prediction
文献类型:期刊论文
作者 | Wang, Peixiao2,4; Wang, Hongen1; Zhang, Hengcai3,4; Lu, Feng3,4![]() |
刊名 | IEEE ACCESS
![]() |
出版日期 | 2019 |
卷号 | 7页码:185928-185940 |
关键词 | Indoor location prediction movement trajectory Markov-LSTM |
ISSN号 | 2169-3536 |
DOI | 10.1109/ACCESS.2019.2961559 |
通讯作者 | Zhang, Hengcai(zhanghc@lreis.ac.cn) ; Wu, Sheng(wusheng@fzu.edu.cn) |
英文摘要 | Accurate and robust indoor location prediction plays an important role in indoor location services. Markov chains (MCs) have been widely adopted for location prediction due to their strong interpretability. However, multi-order Markov chains (k-MCs) are not suitable for predicting long sequences due to problems of dimensionality. This study proposes a hybrid Markov model for location prediction that integrates a long short-term memory model (LSTM); this hybrid model is referred to as the Markov-LSTM. First, a multi-step Markov transition matrix is defined to decompose the k-MC into multiple first-order MCs. The LSTM is then introduced to combine multiple first-order MCs to improve prediction performance. Extensive experiments are conducted using real indoor Wi-Fi positioning datasets collected in a shopping mall. The results show that the Markov-LSTM model significantly outperforms five existing baseline methods in terms of its predictive performance. |
WOS关键词 | PEOPLE MOVEMENT ; VIEW |
资助项目 | National Natural Science Foundation of China[41771436] ; National Natural Science Foundation of China[41701521] ; National Key Research and Development Program of China[2016YFB0502104] ; National Key Research and Development Program of China[2017YFB0503500] ; Digital Fujian Program[2016-23] |
WOS研究方向 | Computer Science ; Engineering ; Telecommunications |
语种 | 英语 |
WOS记录号 | WOS:000510024300016 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China ; National Key Research and Development Program of China ; Digital Fujian Program |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/132156] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Zhang, Hengcai; Wu, Sheng |
作者单位 | 1.Shandong Univ Sci & Technol, Coll Geomat, Qingdao 266590, Peoples R China 2.Fuzhou Univ, Acad Digital China, Fuzhou 350002, Peoples R China 3.Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, IGSNRR, Beijing 100101, Peoples R China 4.Fuzhou Univ, Fujian Collaborat Innovat Ctr Big Data Applicat G, Fuzhou 350002, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Peixiao,Wang, Hongen,Zhang, Hengcai,et al. A Hybrid Markov and LSTM Model for Indoor Location Prediction[J]. IEEE ACCESS,2019,7:185928-185940. |
APA | Wang, Peixiao,Wang, Hongen,Zhang, Hengcai,Lu, Feng,&Wu, Sheng.(2019).A Hybrid Markov and LSTM Model for Indoor Location Prediction.IEEE ACCESS,7,185928-185940. |
MLA | Wang, Peixiao,et al."A Hybrid Markov and LSTM Model for Indoor Location Prediction".IEEE ACCESS 7(2019):185928-185940. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。