Incorporating spatial association into statistical classifiers: local pattern-based prior tuning
文献类型:期刊论文
作者 | Bai, Hexiang1; Cao, Feng1; Atkinson, M. Peter3; Chen, Qian1; Wang, Jinfeng2; Ge, Yong2![]() |
刊名 | INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE
![]() |
出版日期 | 2020-03-12 |
页码 | 38 |
关键词 | Spatial pattern statistical classifier spatial auto-logistic regression spatial data |
ISSN号 | 1365-8816 |
DOI | 10.1080/13658816.2020.1737702 |
通讯作者 | Ge, Yong(gey@lreis.ac.cn) |
英文摘要 | This paper proposes a new classification method for spatial data by adjusting prior class probabilities according to local spatial patterns. First, the proposed method uses a classical statistical classifier to model training data. Second, the prior class probabilities are estimated according to the local spatial pattern and the classifier for each unseen object is adapted using the estimated prior probability. Finally, each unseen object is classified using its adapted classifier. Because the new method can be coupled with both generative and discriminant statistical classifiers, it performs generally more accurately than other methods for a variety of different spatial datasets. Experimental results show that this method has a lower prediction error than statistical classifiers that take no spatial information into account. Moreover, in the experiments, the new method also outperforms spatial auto-logistic regression and Markov random field-based methods when an appropriate estimate of local prior class distribution is used. |
WOS关键词 | REMOTELY-SENSED IMAGES ; K-NN CLASSIFIER ; WEIGHTED REGRESSION ; COVER CHANGE ; EXTRACTION ; MODEL ; IDENTIFICATION ; INFORMATION ; PREDICTION ; EXPANSION |
资助项目 | Strategic Priority Research Program of the Chinese Academy of Science[XDA19040501] ; Chinese National Science Fundation[41725006] ; National Natural Science Foundation of China[41871286] ; National Natural Science Foundation of China[61672331] ; Natural Science Foundation of Shanxi Province, China[201701D121055] |
WOS研究方向 | Computer Science ; Geography ; Physical Geography ; Information Science & Library Science |
语种 | 英语 |
WOS记录号 | WOS:000519399200001 |
出版者 | TAYLOR & FRANCIS LTD |
资助机构 | Strategic Priority Research Program of the Chinese Academy of Science ; Chinese National Science Fundation ; National Natural Science Foundation of China ; Natural Science Foundation of Shanxi Province, China |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/133016] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Ge, Yong |
作者单位 | 1.Shanxi Univ, Sch Comp & Informat Technol, Taiyuan, Shanxi, Peoples R China 2.Chinese Acad Sci, State Key Lab Resources & Environm Informat Syst, Inst Geog Sci & Nat Resources Res, Beijing, Peoples R China 3.Univ Lancaster, Engn Bldg, Lancaster, England |
推荐引用方式 GB/T 7714 | Bai, Hexiang,Cao, Feng,Atkinson, M. Peter,et al. Incorporating spatial association into statistical classifiers: local pattern-based prior tuning[J]. INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,2020:38. |
APA | Bai, Hexiang,Cao, Feng,Atkinson, M. Peter,Chen, Qian,Wang, Jinfeng,&Ge, Yong.(2020).Incorporating spatial association into statistical classifiers: local pattern-based prior tuning.INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE,38. |
MLA | Bai, Hexiang,et al."Incorporating spatial association into statistical classifiers: local pattern-based prior tuning".INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE (2020):38. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。