Sensitivity Analysis-Based Automatic Parameter Calibration of the VIC Model for Streamflow Simulations Over China
文献类型:期刊论文
作者 | Gou, Jiaojiao2; Miao, Chiyuan2; Duan, Qingyun2; Tang, Qiuhong3![]() |
刊名 | WATER RESOURCES RESEARCH
![]() |
出版日期 | 2020 |
卷号 | 56期号:1页码:19 |
ISSN号 | 0043-1397 |
DOI | 10.1029/2019WR025968 |
通讯作者 | Miao, Chiyuan(miaocy@vip.sina.com) |
英文摘要 | Model parameter calibration is a fundamentally important stage that must be completed before applying a model to address practical problems. In this study, we describe an automatic calibration framework that combines sensitivity analysis (SA) and an adaptive surrogate modeling-based optimization (ASMO) algorithm. We use this framework to calibrate catchment-specific sensitive parameters for streamflow simulation in the variable infiltration capacity (VIC) model with a 0.25 degrees spatial resolution over 10 major river basins of China from 1960 to 1979. We found that three parameters-the infiltration parameter (B) and two of the soil depth parameters (D-1, D-2)-are highly sensitive in most basins, while other parameter sensitivities are strongly related to the dynamic environment of the basin. Compared with directly calibrating the seven parameters recommended for the default calibration procedure, our framework not only reduced the computing time by two thirds through opting out of insensitive parameters (type I error) but also improved the Nash-Sutcliffe model efficiency coefficient (NSE) for optimized results when it identified a missing sensitive parameter (type II error) in the case study river basins. Results show that the SA-based ASMO framework is an effective and efficient model-optimization technique for matching simulated streamflow with observations across China. The NSE for monthly streamflow ranged from 0.75 to 0.97 and from 0.71 to 0.97 during the validation and calibration periods, respectively. The calibrated parameters can be applied directly in streamflow simulations across China, and the proposed calibration framework holds important implications for relevant simulation studies in other regions. |
WOS关键词 | CLIMATE-CHANGE ; GLOBAL SENSITIVITY ; WATER-RESOURCES ; LAND MODEL ; RIVER ; OPTIMIZATION ; RUNOFF ; IDENTIFICATION ; UNCERTAINTY ; PROJECTIONS |
资助项目 | National Natural Science Foundation of China[41622101] ; National Natural Science Foundation of China[41730645] ; National Natural Science Foundation of China[41877155] ; State Key Laboratory of Earth Surface Processes and Resource Ecology |
WOS研究方向 | Environmental Sciences & Ecology ; Marine & Freshwater Biology ; Water Resources |
语种 | 英语 |
WOS记录号 | WOS:000520132500041 |
出版者 | AMER GEOPHYSICAL UNION |
资助机构 | National Natural Science Foundation of China ; State Key Laboratory of Earth Surface Processes and Resource Ecology |
源URL | [http://ir.igsnrr.ac.cn/handle/311030/133044] ![]() |
专题 | 中国科学院地理科学与资源研究所 |
通讯作者 | Miao, Chiyuan |
作者单位 | 1.China Three Gorges Int Corp, Beijing, Peoples R China 2.Beijing Normal Univ, Fac Geog Sci, State Key Lab Earth Surface Proc & Resource Ecol, Beijing, Peoples R China 3.Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing, Peoples R China 4.China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Gou, Jiaojiao,Miao, Chiyuan,Duan, Qingyun,et al. Sensitivity Analysis-Based Automatic Parameter Calibration of the VIC Model for Streamflow Simulations Over China[J]. WATER RESOURCES RESEARCH,2020,56(1):19. |
APA | Gou, Jiaojiao.,Miao, Chiyuan.,Duan, Qingyun.,Tang, Qiuhong.,Di, Zhenhua.,...&Zhou, Rui.(2020).Sensitivity Analysis-Based Automatic Parameter Calibration of the VIC Model for Streamflow Simulations Over China.WATER RESOURCES RESEARCH,56(1),19. |
MLA | Gou, Jiaojiao,et al."Sensitivity Analysis-Based Automatic Parameter Calibration of the VIC Model for Streamflow Simulations Over China".WATER RESOURCES RESEARCH 56.1(2020):19. |
入库方式: OAI收割
来源:地理科学与资源研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。