中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Robust spike-and-slab deep Boltzmann machines for face denoising

文献类型:期刊论文

作者Zhang, Nan1,2; Ding, Shifei1,2; Zhang, Jian1,2; Zhao, Xingyu1,2
刊名NEURAL COMPUTING & APPLICATIONS
出版日期2020-04-01
卷号32期号:7页码:2815-2827
关键词Restricted Boltzmann machine Deep Boltzmann machine Unsupervised learning Denoising
ISSN号0941-0643
DOI10.1007/s00521-018-3866-6
英文摘要The robust Gaussian restricted Boltzmann machine can effectively learn the structure of noise to achieve better results in the face denoising task. The robust Gaussian restricted Boltzmann machine model contains two types of the restricted Boltzmann machine (RBM) model, where a general RBM is used to model the structure of the noise and a Gaussian RBM is used to model the clean data. The spike-and-slab RBM shows better learning abilities than the Gaussian RBM in real images modeling. In addition, the deep Boltzmann machine (DBM) shows powerful image reconstruction ability. To model the real images better, we first stack the spike-and-slab RBM and the RBM to create the spike-and-slab DBM. And then, we utilize the spike-and-slab DBM instead of the Gaussian RBM to model the density of the clean data in the Robust Gaussian RBM, and the proposed method is named as the robust spike-and-slab DBM which can obtain clearer denoising images. Finally, in order to obtain better denoising results, we make use of the learned spike-and-slab DBM model and the mean field method to multi-inference the denoising data learned from the robust spike-and-slab DBM. Experimental results show that the robust spike-and-slab DBM is an effective neural network denoising method.
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000522553100064
出版者SPRINGER LONDON LTD
源URL[http://119.78.100.204/handle/2XEOYT63/14020]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Ding, Shifei
作者单位1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, Beijing 100190, Peoples R China
2.China Univ Min & Technol, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
推荐引用方式
GB/T 7714
Zhang, Nan,Ding, Shifei,Zhang, Jian,et al. Robust spike-and-slab deep Boltzmann machines for face denoising[J]. NEURAL COMPUTING & APPLICATIONS,2020,32(7):2815-2827.
APA Zhang, Nan,Ding, Shifei,Zhang, Jian,&Zhao, Xingyu.(2020).Robust spike-and-slab deep Boltzmann machines for face denoising.NEURAL COMPUTING & APPLICATIONS,32(7),2815-2827.
MLA Zhang, Nan,et al."Robust spike-and-slab deep Boltzmann machines for face denoising".NEURAL COMPUTING & APPLICATIONS 32.7(2020):2815-2827.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。