中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
A Quantitative Exploration of Collaborative Pruning and Approximation Computing Towards Energy Efficient Neural Networks

文献类型:期刊论文

作者He, Xin1; Yan, Guihai2; Lu, Wenyan3; Zhang, Xuan4; Liu, Ke5
刊名IEEE DESIGN & TEST
出版日期2020-02-01
卷号37期号:1页码:36-45
关键词Resilience Energy consumption Approximate computing Collaboration Computational modeling Artificial neural networks Optimization Neural network Energy efficient computing Network pruning Approximate computing
ISSN号2168-2356
DOI10.1109/MDAT.2019.2943575
英文摘要Editor's note: This work has the goal of minimizing digital neural network computation energy consumption with little loss in accuracy. The authors describe a Dynamic Network Surgery based approach to network pruning, after which weights are incrementally selected for approximate multiplication. Considering which network components are necessary and determining the needed level of accuracy for them enables greater energy savings than solving either problem independently. - Robert P. Dick, University of Michigan
资助项目National Science Foundation (NSF)[CNS-1739643] ; National Natural Science Foundation of China[61872336] ; National Natural Science Foundation of China[61572470] ; Youth Innovation Promotion Association, Chinese Academy of Science[Y404441000]
WOS研究方向Computer Science ; Engineering
语种英语
WOS记录号WOS:000515556300005
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.204/handle/2XEOYT63/14534]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者He, Xin
作者单位1.Univ Michigan, Ann Arbor, MI 48109 USA
2.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, State Key Lab Comp Architecture, Beijing, Peoples R China
4.Washington Univ, St Louis, MO 63110 USA
5.Washington Univ, Elect & Syst Engn Dept, St Louis, MO 63110 USA
推荐引用方式
GB/T 7714
He, Xin,Yan, Guihai,Lu, Wenyan,et al. A Quantitative Exploration of Collaborative Pruning and Approximation Computing Towards Energy Efficient Neural Networks[J]. IEEE DESIGN & TEST,2020,37(1):36-45.
APA He, Xin,Yan, Guihai,Lu, Wenyan,Zhang, Xuan,&Liu, Ke.(2020).A Quantitative Exploration of Collaborative Pruning and Approximation Computing Towards Energy Efficient Neural Networks.IEEE DESIGN & TEST,37(1),36-45.
MLA He, Xin,et al."A Quantitative Exploration of Collaborative Pruning and Approximation Computing Towards Energy Efficient Neural Networks".IEEE DESIGN & TEST 37.1(2020):36-45.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。