中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Personalized Stride-Length Estimation Based on Active Online Learning

文献类型:期刊论文

作者Wang, Qu1; Luo, Haiyong2; Ye, Langlang2; Men, Aidong1; Zhao, Fang3; Huang, Yan4; Ou, Changhai5
刊名IEEE INTERNET OF THINGS JOURNAL
出版日期2020-06-01
卷号7期号:6页码:4885-4897
关键词Indoor positioning Internet of Things (IoT) online learning pedestrian dead reckoning (PDR) stride-length estimation (SLE) walking-distance estimation
ISSN号2327-4662
DOI10.1109/JIOT.2020.2971318
英文摘要The ability to accurately estimate a user's stride length plays a great important role in various applications. For a new target pedestrian or device, their heterogeneity dramatically reduces the performance of the current stride-length estimation (SLE) methods. To address the issue of heterogeneity, in this article, we propose an SLE method based on a long short-term memory (LSTM) network and denoising autoencoders (DAEs). The LSTM network is used to mine temporal dependencies and extract significant eigenvectors from the corrupted inertial sensor observations. Then, DAEs are adopted to automatically eliminate the inherent noise in eigenvectors and obtain denoised eigenvectors. Finally, a regression module maps the denoised eigenvectors to the resulting stride length. To mitigate the heterogeneity, we propose an unperceived model updating framework based on active online learning to establish a personalized model for a given target pedestrian or device. The proposed framework utilizes a magnetism-aided map-matching approach to automatically generate personalized training data and utilizes online learning technologies to evolve the stride-length model. The extensive experimental results demonstrate that the proposed method outperforms other state-of-the-art algorithms and achieves a promising accuracy with a stride-length error rate of 4.59% at a confidence level of 80%.
资助项目National Key Research and Development Program[2016YFB0502000] ; Action Plan Project of the Beijing University of Posts and Telecommunications - Fundamental Research Funds for the Central Universities[2019XD-A06] ; Special Project for Youth Research and Innovation, Beijing University of Posts and Telecommunications ; Fundamental Research Funds for the Central Universities[2019PTB-011] ; National Natural Science Foundation of China[61872046] ; National Natural Science Foundation of China[61761038] ; National Natural Science Foundation of China[61671264] ; National Natural Science Foundation of China[61671077] ; Key Research and Development Project from Hebei Province[19210404D] ; Open Project of the Beijing Key Laboratory of Mobile Computing and Pervasive Device
WOS研究方向Computer Science ; Engineering ; Telecommunications
语种英语
WOS记录号WOS:000543157700016
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
源URL[http://119.78.100.204/handle/2XEOYT63/15196]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Luo, Haiyong
作者单位1.Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
2.Chinese Acad Sci, Beijing Key Lab Mobile Comp & Pervas Device, Inst Comp Technol, Beijing 100190, Peoples R China
3.Beijing Univ Posts & Telecommun, Sch Software Engn, Beijing 100876, Peoples R China
4.Peking Univ, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China
5.Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
推荐引用方式
GB/T 7714
Wang, Qu,Luo, Haiyong,Ye, Langlang,et al. Personalized Stride-Length Estimation Based on Active Online Learning[J]. IEEE INTERNET OF THINGS JOURNAL,2020,7(6):4885-4897.
APA Wang, Qu.,Luo, Haiyong.,Ye, Langlang.,Men, Aidong.,Zhao, Fang.,...&Ou, Changhai.(2020).Personalized Stride-Length Estimation Based on Active Online Learning.IEEE INTERNET OF THINGS JOURNAL,7(6),4885-4897.
MLA Wang, Qu,et al."Personalized Stride-Length Estimation Based on Active Online Learning".IEEE INTERNET OF THINGS JOURNAL 7.6(2020):4885-4897.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。