A Hierarchical CNN-RNN Approach for Visual Emotion Classification
文献类型:期刊论文
作者 | Li, Liang1; Zhu, Xinge2; Hao, Yiming3; Wang, Shuhui1; Gao, Xingyu4,6; Huang, Qingming2,4,5 |
刊名 | ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS
![]() |
出版日期 | 2019 |
卷号 | 15期号:3页码:17 |
关键词 | Visual emotion recognition multi-task learning feature fusing hierarchical CNN-RNN stacked bi-directional RNN |
ISSN号 | 1551-6857 |
DOI | 10.1145/3359753 |
英文摘要 | Visual emotion classification is predicting emotional reactions of people for the given visual content. Psychological studies show that human emotions are affected by various visual stimuli from low level to high level, including contrast, color, texture, scene, object, and association, among others. Traditional approaches regarded different levels of stimuli as independent components and ignored to effectively fuse different stimuli. This article proposes a hierarchical convolutional neural network (CNN)-recurrent neural network (RNN) approach to predict the emotion based on the fused stimuli by exploiting the dependency among different-level features. First, we introduce a dual CNN to extract different levels of visual stimulus, where two related loss functions are designed to learn the stimuli representation under a multi-task learning structure. Further, to model the dependency between the low- and high-level stimulus, a stacked bi-directional RNN is proposed to fuse the preceding learned features from the dual CNN. Comparison experiments on one large-scale and three small scale datasets show that the proposed approach brings significant improvement. Ablation experiments demonstrate the effectiveness of different modules from our model. |
资助项目 | National MCF Energy RD Program[2018YFE0303100] ; National Natural Science Foundation of China[61771457] ; National Natural Science Foundation of China[61732007] ; National Natural Science Foundation of China[61772494] ; National Natural Science Foundation of China[61672497] ; National Natural Science Foundation of China[61836002] ; National Natural Science Foundation of China[61472389] ; National Natural Science Foundation of China[61702491] ; National Natural Science Foundation of China[61620106009] ; National Natural Science Foundation of China[U1636214] ; Key Research Program of Frontier Sciences, Chinese Academy of Sciences[QYZDJ-SSWSYS013] |
WOS研究方向 | Computer Science |
语种 | 英语 |
WOS记录号 | WOS:000535718800013 |
出版者 | ASSOC COMPUTING MACHINERY |
源URL | [http://119.78.100.204/handle/2XEOYT63/15314] ![]() |
专题 | 中国科学院计算技术研究所期刊论文_英文 |
通讯作者 | Wang, Shuhui |
作者单位 | 1.Chinese Acad Sci, Key Lab Intelligent Informat Proc, Inst Comp Technol, CAS, 6 Kexueyuan South Rd, Beijing 100190, Peoples R China 2.Univ Chinese Acad Sci, Sch Comp Sci & Technol, 19 A Yuquan Rd, Beijing 100049, Peoples R China 3.Shandong Univ, Shanda South Rd 27, Jinan 250100, Peoples R China 4.Chinese Acad Sci, Beijing, Peoples R China 5.Peng Cheng Lab, Shenzhen, Peoples R China 6.Chinese Acad Sci, Inst Microelect, Beijing 100029, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Liang,Zhu, Xinge,Hao, Yiming,et al. A Hierarchical CNN-RNN Approach for Visual Emotion Classification[J]. ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,2019,15(3):17. |
APA | Li, Liang,Zhu, Xinge,Hao, Yiming,Wang, Shuhui,Gao, Xingyu,&Huang, Qingming.(2019).A Hierarchical CNN-RNN Approach for Visual Emotion Classification.ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS,15(3),17. |
MLA | Li, Liang,et al."A Hierarchical CNN-RNN Approach for Visual Emotion Classification".ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 15.3(2019):17. |
入库方式: OAI收割
来源:计算技术研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。