中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Speedup in classical simulation of Gaussian boson sampling

文献类型:期刊论文

作者Wu, Bujiao2,3; Cheng, Bin4; Jia, Fei1; Zhang, Jialin2,3; Yung, Man-Hong1,4,5; Sun, Xiaoming2,3,6
刊名SCIENCE BULLETIN
出版日期2020-05-30
卷号65期号:10页码:832-841
关键词Gaussian boson sampling Classical simulation Hafnian Probability distribution Marginal distribution Quantum optics
ISSN号2095-9273
DOI10.1016/j.scib.2020.02.012
英文摘要Gaussian boson sampling is an alternative model for demonstrating quantum computational supremacy, where squeezed states are injected into every input mode, instead of applying single photons as in the case of standard boson sampling. Here by analyzing numerically the computational costs, we establish a lower bound for achieving quantum computational supremacy for a class of Gaussian boson-sampling problems. Specifically, we propose a more efficient method for calculating the transition probabilities, leading to a significant reduction of the simulation costs. Particularly, our numerical results indicate that one can simulate up to 18 photons for Gaussian boson sampling at the output subspace on a normal laptop, 20 photons on a commercial workstation with 256 cores, and about 30 photons for supercomputers. These numbers are significantly smaller than those in standard boson sampling, suggesting that Gaussian boson sampling could be experimentally-friendly for demonstrating quantum computational supremacy. (C) 2020 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
资助项目Guangdong Innovative and Entrepreneurial Research Team Program[2016ZT06D348] ; Natural Science Foundation of Guangdong Province[2017B030308003] ; Key R&D Program of Guangdong Province[2018B030326001] ; Science, Technology and Innovation Commission of Shenzhen Municipality[JCYJ20170412152620376] ; Science, Technology and Innovation Commission of Shenzhen Municipality[JCYJ20170817105046702] ; Science, Technology and Innovation Commission of Shenzhen Municipality[KYTDPT20181011104202253] ; National Natural Science Foundation of China[61832003] ; National Natural Science Foundation of China[61872334] ; National Natural Science Foundation of China[11875160] ; National Natural Science Foundation of China[U1801661] ; Economy, Trade and Information Commission of Shenzhen Municipality[201901161512] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDB28000000] ; K. C. Wong Education Foundation
WOS研究方向Science & Technology - Other Topics
语种英语
WOS记录号WOS:000531830800012
出版者ELSEVIER
源URL[http://119.78.100.204/handle/2XEOYT63/15376]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Yung, Man-Hong; Sun, Xiaoming
作者单位1.Huawei Technol, Cent Res Inst, Shenzhen 518129, Peoples R China
2.Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Southern Univ Sci & Technol, Inst Quantum Sci & Engn, Dept Phys, Shenzhen 518055, Peoples R China
5.Southern Univ Sci & Technol, Shenzhen Key Lab Quantum Sci & Engn, Shenzhen 518055, Peoples R China
6.CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Wu, Bujiao,Cheng, Bin,Jia, Fei,et al. Speedup in classical simulation of Gaussian boson sampling[J]. SCIENCE BULLETIN,2020,65(10):832-841.
APA Wu, Bujiao,Cheng, Bin,Jia, Fei,Zhang, Jialin,Yung, Man-Hong,&Sun, Xiaoming.(2020).Speedup in classical simulation of Gaussian boson sampling.SCIENCE BULLETIN,65(10),832-841.
MLA Wu, Bujiao,et al."Speedup in classical simulation of Gaussian boson sampling".SCIENCE BULLETIN 65.10(2020):832-841.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。