中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Learning to balance the coherence and diversity of response generation in generation-based chatbots

文献类型:期刊论文

作者Wang, Shuliang1,2; Li, Dapeng1; Geng, Jing1,2; Yang, Longxing3; Leng, Hongyong1
刊名INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS
出版日期2020-07-01
卷号17期号:4页码:11
关键词Variational autoencoder dialog system deep learning response generation chatbots
ISSN号1729-8814
DOI10.1177/1729881420953006
英文摘要Generating response with both coherence and diversity is a challenging task in generation-based chatbots. It is more difficult to improve the coherence and diversity of dialog generation at the same time in the response generation model. In this article, we propose an improved method that improves the coherence and diversity of dialog generation by changing the model to use gamma sampling and adding attention mechanism to the knowledge-guided conditional variational autoencoder. The experimental results demonstrate that our proposed method can significantly improve the coherence and diversity of knowledge-guided conditional variational autoencoder for response generation in generation-based chatbots at the same time.
资助项目Beijing Municipal Science and Technology Project[Z171100005117002] ; Open Fund of Key Laboratory for National Geographic Census and Monitoring, National Administration of Surveying, Mapping and Geoformation[2017NGCMZD03]
WOS研究方向Robotics
语种英语
WOS记录号WOS:000567168500001
出版者SAGE PUBLICATIONS INC
源URL[http://119.78.100.204/handle/2XEOYT63/15502]  
专题中国科学院计算技术研究所期刊论文_英文
通讯作者Li, Dapeng; Geng, Jing
作者单位1.Beijing Inst Technol, Sch Comp Sci & Technol, 5 South St, Beijing 100081, Peoples R China
2.Beijing Inst Technol, Acad E Govt, Beijing, Peoples R China
3.Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Wang, Shuliang,Li, Dapeng,Geng, Jing,et al. Learning to balance the coherence and diversity of response generation in generation-based chatbots[J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS,2020,17(4):11.
APA Wang, Shuliang,Li, Dapeng,Geng, Jing,Yang, Longxing,&Leng, Hongyong.(2020).Learning to balance the coherence and diversity of response generation in generation-based chatbots.INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS,17(4),11.
MLA Wang, Shuliang,et al."Learning to balance the coherence and diversity of response generation in generation-based chatbots".INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS 17.4(2020):11.

入库方式: OAI收割

来源:计算技术研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。