中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
高熵合金在极端条件下的塑性流动行为

文献类型:学位论文

作者蒲 卓; 蒲卓
答辩日期2020-11-16
文献子类博士
授予单位中国科学院大学
授予地点北京
导师戴兰宏
关键词高熵合金,氢脆,极低温,准等熵加载,大塑性变形
学位专业固体力学
其他题名Plastic flow behavior of high entropy alloys under extreme conditions
英文摘要

近年来,研究人员打破传统的以单一主元为基础的合金设计理念,运用多种元素以等原子或近等原子比混合,成功制备出多种化学无序的“高熵合金”。这一类合金呈现出一系列优异的力学性能,在航天、国防等领域展示出广泛的应用前景。目前对高熵合金在不同服役环境,尤其是一些极端环境下的塑性流动行为及其背后的机理认识尚不充分,亟待开展进一步的相关工作。为此,本文针对CrMnFeCoNi高熵合金在不同极端条件下的塑性流动行为展开了研究,取得如下主要创新性进展:

1)基于自主搭建的电化学系统,对高熵合金进行氢鼓泡原位生长观察,开展了充氢前后高熵合金的拉伸性能测试,并与传统合金进行对比,发现高熵合金在室温以及低温环境下均具备更优异的抗氢脆性能。运用SEMTEM等显微电子观测技术,表征了各种材料充氢前后的断口形貌与微观变形结构,发现高熵合金主要以韧性断裂为主,而两种传统合金则存在一定程度的脆性断裂特征;微观变形结构方面,高熵合金形成更少的氢捕获点,抑制了氢在材料内部的富集,从而限制了氢脆机理的开动,使其具备更优异的抗氢脆性能。

2)对高熵合金开展了在273 K77 K4.2 K温度下的准静态拉伸实验,发现其在4.2 K温度下出现显著的锯齿状塑性流动现象。运用TEM对不同温度下变形试样进行观察发现,“Lomer-Cottrell锁”对位错滑移的阻碍效应是造成材料塑性变形时应力集中的主要原因,而后续的位错滑移、变形孪晶、马氏体相变等过程则在一定程度上使材料内部发生应力松弛。结合热力学分析,证明上述过程的交替出现是造成材料在极低温下锯齿状塑性流动的主要原因。对4.2 K拉伸实验信号进行非线性动力学分析,证明了高熵合金在该极低温度下塑性变形时,位错群体行为具有混沌的动力学特征。

3)基于CQ-4磁驱动斜波加载系统,实现了对高熵合金高达至30 GPa的准等熵加载;通过波形分析,首次获得了CrMnFeCoNi高熵合金的准等熵压缩曲线。通过设计动量陷阱装置,成功回收加载后的高熵合金薄片样品。通过XRD表征与EBSD观察,并未在加载后的样品中发现相变,从而证明该高熵合金具备稳定的晶体结构特征。不同加载压力样品的纳米压痕实验表明,加载后该合金的硬度显著提高。运用TEM技术对不同加载压力的样品进行观察,发现位错滑移与变形孪晶是高熵合金在准等熵加载下的主要塑性变形方式。

4)运用压缩式挤压切削装置,对块体高熵合金进行大塑性变形处理,实现充分的晶粒细化;通过后续不同条件的退火工艺,实现了材料内部的部分再结晶。拉伸实验表明,经适当处理后的试样,其屈服强度大大提升,而均匀延伸率也得到不错的保留,这初步提升了材料的“强-韧”匹配性能。运用EBSDTEM等显微电子技术,对不同预处理试样变形前后的微结构与组织进行观察,揭示了这些高熵合金的塑性变形机理。

 

语种中文
源URL[http://dspace.imech.ac.cn/handle/311007/85587]  
专题力学研究所_非线性力学国家重点实验室
推荐引用方式
GB/T 7714
蒲 卓,蒲卓. 高熵合金在极端条件下的塑性流动行为[D]. 北京. 中国科学院大学. 2020.

入库方式: OAI收割

来源:力学研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。