Multimodal Glioma Image Segmentation Using Dual Encoder Structure and Channel Spatial Attention Block
文献类型:期刊论文
作者 | Su, Run1,2; Liu, Jinhuai1,2![]() |
刊名 | FRONTIERS IN NEUROSCIENCE
![]() |
出版日期 | 2020-10-28 |
卷号 | 14 |
关键词 | medical image fusion glioma segmentation fully convolutional neural networks DES CSAB F-S-Net |
DOI | 10.3389/fnins.2020.586197 |
通讯作者 | Liu, Jinhuai(jhliu@iim.ac.cn) |
英文摘要 | Multimodal medical images provide significant amounts of complementary semantic information. Therefore, multimodal medical imaging has been widely used in the segmentation of gliomas through computational neural networks. However, inputting images from different sources directly to the network does not achieve the best segmentation effect. This paper describes a convolutional neural network called F-S-Net that fuses the information from multimodal medical images and uses the semantic information contained within these images for glioma segmentation. The architecture of F-S-Net is formed by cascading two sub-networks. The first sub-network projects the multimodal medical images into the same semantic space, which ensures they have the same semantic metric. The second sub-network uses a dual encoder structure (DES) and a channel spatial attention block (CSAB) to extract more detailed information and focus on the lesion area. DES and CSAB are integrated into U-Net architectures. A multimodal glioma dataset collected by Yijishan Hospital of Wannan Medical College is used to train and evaluate the network. F-S-Net is found to achieve a dice coefficient of 0.9052 and Jaccard similarity of 0.8280, outperforming several previous segmentation methods. |
WOS关键词 | DEEP |
资助项目 | Science and Technology Project grant from Anhui Province[1508085QHl84] ; Science and Technology Project grant from Anhui Province[201904a07020098] ; Fundamental Research Fund for the Central Universities[WK 9110000032] |
WOS研究方向 | Neurosciences & Neurology |
语种 | 英语 |
WOS记录号 | WOS:000588015400001 |
出版者 | FRONTIERS MEDIA SA |
资助机构 | Science and Technology Project grant from Anhui Province ; Fundamental Research Fund for the Central Universities |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/105070] ![]() |
专题 | 中国科学院合肥物质科学研究院 |
通讯作者 | Liu, Jinhuai |
作者单位 | 1.Chinese Acad Sci, Hefei Inst Phys Sci, Inst Intelligent Machines, Hefei, Peoples R China 2.Univ Sci & Technol China, Sci Isl Branch, Grad Sch, Hefei, Peoples R China 3.Anhui Agr Univ, Sch Engn, Hefei, Peoples R China 4.Univ Sci & Technol China, Affiliated Hosp 1, Dept Neurosurg, Hefei, Peoples R China 5.Anhui Prov Key Lab Brain Funct & Brain Dis, Hefei, Peoples R China 6.Univ Sci & Technol China, Div Life Sci & Med, Hefei, Peoples R China 7.Wannan Med Coll, Sch Med Informat, Wuhu, Peoples R China |
推荐引用方式 GB/T 7714 | Su, Run,Liu, Jinhuai,Zhang, Deyun,et al. Multimodal Glioma Image Segmentation Using Dual Encoder Structure and Channel Spatial Attention Block[J]. FRONTIERS IN NEUROSCIENCE,2020,14. |
APA | Su, Run,Liu, Jinhuai,Zhang, Deyun,Cheng, Chuandong,&Ye, Mingquan.(2020).Multimodal Glioma Image Segmentation Using Dual Encoder Structure and Channel Spatial Attention Block.FRONTIERS IN NEUROSCIENCE,14. |
MLA | Su, Run,et al."Multimodal Glioma Image Segmentation Using Dual Encoder Structure and Channel Spatial Attention Block".FRONTIERS IN NEUROSCIENCE 14(2020). |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。