Micro-milling tool wear monitoring under variable cutting parameters and runout using fast cutting force coefficient identification method
文献类型:期刊论文
作者 | Liu, Tongshun1; Zhu, Kunpeng2; Wang, Gang1 |
刊名 | INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
![]() |
出版日期 | 2020-11-07 |
关键词 | Micro-milling Cutting force model Tool runout Cutting force coefficient identification Tool wear monitoring |
ISSN号 | 0268-3768 |
DOI | 10.1007/s00170-020-06272-z |
通讯作者 | Liu, Tongshun(tongshunliu@hotmail.com) |
英文摘要 | Extracting discriminative tool wear features is of great importance for tool wear monitoring in micro-milling. However, due to the dependency on tool runout and cutting parameters, the traditional tool wear features are incompetent to monitor the tool wear condition in micro-milling with significant tool runout and varied cutting parameter interactions. In this study, micro-milling cutting force is represented by a parametric model including variable cutting parameters, tool runout, and tool wear. The cutting force coefficient in the model, which is not only discriminative to the tool wear condition but also independent to the tool runout and cutting parameters, is extracted as the micro-milling tool wear feature. To reduce the computation cost, a fast neural network-based method is proposed to identify the tool runout and the cutting force coefficient from the cutting force signal. Experimental results show that the proposed cutting force coefficient-based approach is efficient to monitor the micro-milling tool wear under varied cutting parameters and tool runout. |
WOS关键词 | CHIP THICKNESS MODEL ; LIFE PREDICTION ; NEURAL-NETWORK ; SYSTEM ; STATE ; SENSOR |
资助项目 | Natural Science Foundation of the Jiangsu Higher Education Institutions of China[19KJB460007] ; National Natural Science Foundation of China[51805341] ; Natural Science Foundation of Jiangsu Province[BK20180843] |
WOS研究方向 | Automation & Control Systems ; Engineering |
语种 | 英语 |
WOS记录号 | WOS:000587273600004 |
出版者 | SPRINGER LONDON LTD |
资助机构 | Natural Science Foundation of the Jiangsu Higher Education Institutions of China ; National Natural Science Foundation of China ; Natural Science Foundation of Jiangsu Province |
源URL | [http://ir.hfcas.ac.cn:8080/handle/334002/105160] ![]() |
专题 | 中国科学院合肥物质科学研究院 |
通讯作者 | Liu, Tongshun |
作者单位 | 1.Soochow Univ, Sch Mech & Elect Engn, Suzhou 215021, Jiangsu, Peoples R China 2.Chinese Acad Sci, Inst Adv Mfg Technol, Hefei Inst Phys Sci, Changzhou 213164, Jiangsu, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Tongshun,Zhu, Kunpeng,Wang, Gang. Micro-milling tool wear monitoring under variable cutting parameters and runout using fast cutting force coefficient identification method[J]. INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY,2020. |
APA | Liu, Tongshun,Zhu, Kunpeng,&Wang, Gang.(2020).Micro-milling tool wear monitoring under variable cutting parameters and runout using fast cutting force coefficient identification method.INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY. |
MLA | Liu, Tongshun,et al."Micro-milling tool wear monitoring under variable cutting parameters and runout using fast cutting force coefficient identification method".INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY (2020). |
入库方式: OAI收割
来源:合肥物质科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。