Hybrid many-objective cuckoo search algorithm withLevyand exponential distributions
文献类型:期刊论文
作者 | Cui, Zhihua2; Zhang, Maoqing3; Wang, Hui1; Cai, Xingjuan2; Zhang, Wensheng4![]() |
刊名 | MEMETIC COMPUTING
![]() |
出版日期 | 2020-07-26 |
页码 | 15 |
关键词 | HMaOCS Cuckoo search Levydistribution Exponential distribution |
ISSN号 | 1865-9284 |
DOI | 10.1007/s12293-020-00308-3 |
通讯作者 | Zhang, Maoqing(maoqing_zhang@163.com) |
英文摘要 | Hybrid many-objective cuckoo search algorithm (HMaOCS) is a newly proposed method for Many-objective optimization problems (MaOPs), and has achieved promising performance. However,Levyand Gaussian distributions used in global search manner of HMaOCS is originally proposed for optimization problems with one objective, and they are not suitable for MaOPs as illustrated in this paper. To further exploit the potential of HMaOCS, this paper investigates four different probability distributions and their six corresponding combinations. Comparison results illustrate that the combination ofLevyand Exponential distributions is able to greatly improve HMaOCS. On the basis of comparison results and analysis on both DTLZ and WFG test suites with 2, 3, 4, 6, 8 and 10 objectives, it can be concluded that HMaOCS withLevyand Exponential distributions exhibits better performance compared with most advanced algorithms. |
WOS关键词 | EVOLUTIONARY ALGORITHM ; SELECTION |
资助项目 | National Natural Science Foundation of China[61806138] ; National Natural Science Foundation of China[U1636220] ; National Natural Science Foundation of China[61663028] ; National Natural Science Foundation of China[71771176] ; National Natural Science Foundation of China[51775385] ; National Natural Science Foundation of China[61703279] ; National Natural Science Foundation of China[71371142] ; Natural Science Foundation of Shanxi Province[201801D121127] ; PhD Research Startup Foundation of Taiyuan University of Science and Technology[20182002] ; Distinguished Young Talents Plan of Jiang-xi Province[20171BCB23075] ; Natural Science Foundation of Jiang-xi Province[20171BAB202035] |
WOS研究方向 | Computer Science ; Operations Research & Management Science |
语种 | 英语 |
WOS记录号 | WOS:000552582000001 |
出版者 | SPRINGER HEIDELBERG |
资助机构 | National Natural Science Foundation of China ; Natural Science Foundation of Shanxi Province ; PhD Research Startup Foundation of Taiyuan University of Science and Technology ; Distinguished Young Talents Plan of Jiang-xi Province ; Natural Science Foundation of Jiang-xi Province |
源URL | [http://ir.ia.ac.cn/handle/173211/40277] ![]() |
专题 | 精密感知与控制研究中心_人工智能与机器学习 |
通讯作者 | Zhang, Maoqing |
作者单位 | 1.Nanchang Inst Technol, Sch Informat Engn, Nanchang 330099, Jiangxi, Peoples R China 2.Taiyuan Univ Sci & Technol, Complex Syst & Computat Intelligence Lab, Taiyuan 030024, Shanxi, Peoples R China 3.Tongji Univ, Sch Elect & Informat Engn, Shanghai 201804, Peoples R China 4.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China 5.Swinburne Univ Technol, Melbourne, Vic 3000, Australia |
推荐引用方式 GB/T 7714 | Cui, Zhihua,Zhang, Maoqing,Wang, Hui,et al. Hybrid many-objective cuckoo search algorithm withLevyand exponential distributions[J]. MEMETIC COMPUTING,2020:15. |
APA | Cui, Zhihua,Zhang, Maoqing,Wang, Hui,Cai, Xingjuan,Zhang, Wensheng,&Chen, Jinjun.(2020).Hybrid many-objective cuckoo search algorithm withLevyand exponential distributions.MEMETIC COMPUTING,15. |
MLA | Cui, Zhihua,et al."Hybrid many-objective cuckoo search algorithm withLevyand exponential distributions".MEMETIC COMPUTING (2020):15. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。