中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Adaptive multi-branch correlation filters for robust visual tracking

文献类型:期刊论文

作者Li, Xiaojing2; Huang, Lei1,2; Wei, Zhiqiang1,2; Nie, Jie2; Chen, Zhineng3
刊名NEURAL COMPUTING & APPLICATIONS
出版日期2020-08-12
页码16
关键词Visual tracking Correlation filter Multi-branch Appearance changes Background suppression
ISSN号0941-0643
DOI10.1007/s00521-020-05126-9
通讯作者Wei, Zhiqiang(weizhiqiang@ouc.edu.cn)
英文摘要In recent years, deep convolutional features have been applied to discriminative correlation filters-based methods, which have achieved impressive performance in tracking. Most of them utilize hierarchical features from a certain layer. However, this is not always sufficient to learn target appearance changes and to suppress the background interference in complicated interfering factors (e.g., deformation, fast motion, low resolution, and rotations). In this paper, we propose an adaptive multi-branch correlation filter tracking method, by constructing multi-branch models and using an adaptive selection strategy to improve the accuracy and robustness of visual tracking. Specially, the multi-branch models are introduced to tolerate temporal changes of the object, which can serve different circumstances. In addition, the adaptive selection strategy incorporates both foreground and background information to learn background suppression. To further improve the tracking performance, we propose a measurement method to handle tracking failures from unreliable samples. Extensive experiments on OTB-2013, OTB-2015, and VOT-2016 datasets show that the proposed tracker has comparable performance compared to state-of-the-art tracking methods. Especially, on the OTB-2015, our method significantly improves the baseline with a gain of 5.5% in overlap precision.
WOS关键词OBJECT TRACKING
资助项目National Natural Science Foundation of China[61872326] ; National Natural Science Foundation of China[61672475] ; National Natural Science Foundation of China[61772526] ; Shandong Provincial Natural Science Foundation[ZR2019MF044]
WOS研究方向Computer Science
语种英语
WOS记录号WOS:000559302200001
出版者SPRINGER LONDON LTD
资助机构National Natural Science Foundation of China ; Shandong Provincial Natural Science Foundation
源URL[http://ir.ia.ac.cn/handle/173211/40431]  
专题数字内容技术与服务研究中心_远程智能医疗
通讯作者Wei, Zhiqiang
作者单位1.Qingdao Natl Lab Marine Sci & Technol, Qingdao 266000, Peoples R China
2.Ocean Univ China, Coll Informat Sci & Engn, Qingdao 266000, Peoples R China
3.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Xiaojing,Huang, Lei,Wei, Zhiqiang,et al. Adaptive multi-branch correlation filters for robust visual tracking[J]. NEURAL COMPUTING & APPLICATIONS,2020:16.
APA Li, Xiaojing,Huang, Lei,Wei, Zhiqiang,Nie, Jie,&Chen, Zhineng.(2020).Adaptive multi-branch correlation filters for robust visual tracking.NEURAL COMPUTING & APPLICATIONS,16.
MLA Li, Xiaojing,et al."Adaptive multi-branch correlation filters for robust visual tracking".NEURAL COMPUTING & APPLICATIONS (2020):16.

入库方式: OAI收割

来源:自动化研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。