非贪婪的鲁棒性度量学习算法
文献类型:期刊论文
作者 | 曾凡霞1,2![]() ![]() |
刊名 | 中国图象图形学报
![]() |
出版日期 | 2020-09 |
卷号 | 25期号:9页码:1825-1836 |
关键词 | 距离度量学习 鲁棒性 非贪婪算法 边缘费歇尔分析( MFA) 分类识别 L2 /L1 损失 |
英文摘要 | 度量学习是机器学习与图像处理中依赖于任务的基础研究问题。由于实际应用背景复杂,在大量不可避免的噪声环境下,度量学习方法的性能受到一定影响。为了降低噪声影响,现有方法常用L1 距离取代L2距离,这种方式可以同时减小相似样本和不相似样本的损失尺度,却忽略了噪声对类内和类间样本的不同影响。为此,本文提出了一种非贪婪的鲁棒性度量学习算法———基于L2 /L1 损失的边缘费歇尔分析( marginal Fisher analysis based on L2 /L1 loss,MFA-L2 /L1) ,采用更具判别性的损失,可提升噪声环境下的识别性能。方法在边缘费歇尔分析( marginal Fisher analysis,MFA) 方法的基础上,所提模型采用L2 距离刻画相似样本损失、L1 距离刻画不相似样本损失,同时加大对两类样本的惩罚程度以提升方法的判别性。首先,针对模型非凸带来的求解困难,将目标函数转为迭代两个凸函数之差便于求解; 然后,受DCA( difference of convex functions algorithm) 思想启发,推导出非贪婪的迭代求解算法,求得最终度量矩阵; 最后,算法的理论证明保证了迭代算法的收敛性。结果在5 个UCI |
语种 | 中文 |
源URL | [http://ir.ia.ac.cn/handle/173211/40559] ![]() |
专题 | 精密感知与控制研究中心_人工智能与机器学习 |
通讯作者 | 张文生 |
作者单位 | 1.中国科学院自动化研究所 2.中国科学院大学 |
推荐引用方式 GB/T 7714 | 曾凡霞,张文生. 非贪婪的鲁棒性度量学习算法[J]. 中国图象图形学报,2020,25(9):1825-1836. |
APA | 曾凡霞,&张文生.(2020).非贪婪的鲁棒性度量学习算法.中国图象图形学报,25(9),1825-1836. |
MLA | 曾凡霞,et al."非贪婪的鲁棒性度量学习算法".中国图象图形学报 25.9(2020):1825-1836. |
入库方式: OAI收割
来源:自动化研究所
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。