Bayesian Automatic Model Compression
文献类型:期刊论文
作者 | Wang, Jiaxing1,4![]() ![]() ![]() |
刊名 | IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING
![]() |
出版日期 | 2020-05-01 |
卷号 | 14期号:4页码:727-736 |
关键词 | Quantization (signal) Bayes methods Mathematical model Training Mixture models Optimization Machine learning Bayesian learning model compression automatic machine learning quantizartion explainability |
ISSN号 | 1932-4553 |
DOI | 10.1109/JSTSP.2020.2977090 |
通讯作者 | Cheng, Jian(jcheng@nlpr.ia.ac.cn) |
英文摘要 | Model compression has drawn great attention in deep learning community. A core problem in model compression is to determine the layer-wise optimal compression policy, e.g., the layer-wise bit-width in network quantization. Conventional hand-crafted heuristics rely on human experts and are usually sub-optimal, while recent reinforcement learning based approaches can be inefficient during the exploration of the policy space. In this article, we propose Bayesian automatic model compression (BAMC), which leverages non-parametric Bayesian methods to learn the optimal quantization bit-width for each layer of the network. BAMC is trained in a one-shot manner, avoiding the back and forth (re)-training in reinforcement learning based approaches. Experimental results on various datasets validate that our proposed methods can find reasonable quantization policies efficiently with little accuracy drop for the quantized network. |
资助项目 | National Natural Science Foundation of China[61876182] ; National Natural Science Foundation of China[61906193] ; National Natural Science Foundation of China[61906195] ; Strategic Priority Research Program of Chinese Academy of Science[XDB32050200] ; Advance Research Program[31511130301] |
WOS研究方向 | Engineering |
语种 | 英语 |
WOS记录号 | WOS:000565858900011 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
资助机构 | National Natural Science Foundation of China ; Strategic Priority Research Program of Chinese Academy of Science ; Advance Research Program |
源URL | [http://ir.ia.ac.cn/handle/173211/41513] ![]() |
专题 | 类脑芯片与系统研究 |
通讯作者 | Cheng, Jian |
作者单位 | 1.Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China 2.Tencent AI Lab, Machine Learning Grp, Shenzhen 518000, Peoples R China 3.Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong 999077, Peoples R China 4.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100190, Peoples R China 5.CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China 6.Univ Chinese Acad Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Jiaxing,Bai, Haoli,Wu, Jiaxiang,et al. Bayesian Automatic Model Compression[J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING,2020,14(4):727-736. |
APA | Wang, Jiaxing,Bai, Haoli,Wu, Jiaxiang,&Cheng, Jian.(2020).Bayesian Automatic Model Compression.IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING,14(4),727-736. |
MLA | Wang, Jiaxing,et al."Bayesian Automatic Model Compression".IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 14.4(2020):727-736. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。