Sliding mode control based on RBF neural network for a class of underactuated systems with unknown sensor and actuator faults
文献类型:期刊论文
| 作者 | Ji, Ning1; Liu, Jinkun1; Yang, Hongjun2
|
| 刊名 | INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE
![]() |
| 出版日期 | 2020-09-10 |
| 页码 | 11 |
| 关键词 | Underactuated system sliding mode control actuator fault tolerance sensor fault tolerance coupled motor driving system |
| ISSN号 | 0020-7721 |
| DOI | 10.1080/00207721.2020.1817615 |
| 通讯作者 | Liu, Jinkun(ljk@buaa.edu.cn) |
| 英文摘要 | A sliding mode control method is developed in this study for application to a class of underactuated systems with bounded unknown disturbance and sensor and actuator faults. In the proposed method, a robustness item compensates for the bounded unknown disturbance and a Nussbaum function realises sensor and actuator faults tolerance simultaneously, and all signals of the system are proven to be bounded. A radial basis function (RBF) neural network is developed to estimate the unknown functions of the system. Finally, Hurwitz stability analysis is conducted to guarantee the stability of the closed-loop system. Simulations are conducted wherein a coupled motor driving system is placed under the proposed control laws to validate this approach. |
| WOS关键词 | NONLINEAR-SYSTEMS ; TRACKING CONTROL ; CONTROL STRATEGY ; DESIGN |
| 资助项目 | National Natural Science Foundation of China[61873296] ; Academic Excellence Foundation of BUAA ; CAS Prospective Deployment Project[ZDRW-KT2019-1-010402] |
| WOS研究方向 | Automation & Control Systems ; Computer Science ; Operations Research & Management Science |
| 语种 | 英语 |
| WOS记录号 | WOS:000567974700001 |
| 出版者 | TAYLOR & FRANCIS LTD |
| 资助机构 | National Natural Science Foundation of China ; Academic Excellence Foundation of BUAA ; CAS Prospective Deployment Project |
| 源URL | [http://ir.ia.ac.cn/handle/173211/41934] ![]() |
| 专题 | 自动化研究所_复杂系统管理与控制国家重点实验室_先进机器人控制团队 |
| 通讯作者 | Liu, Jinkun |
| 作者单位 | 1.Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China 2.Chinese Acad Sci, State Key Lab Management & Control Complex Syst, Inst Automat, Beijing, Peoples R China |
| 推荐引用方式 GB/T 7714 | Ji, Ning,Liu, Jinkun,Yang, Hongjun. Sliding mode control based on RBF neural network for a class of underactuated systems with unknown sensor and actuator faults[J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE,2020:11. |
| APA | Ji, Ning,Liu, Jinkun,&Yang, Hongjun.(2020).Sliding mode control based on RBF neural network for a class of underactuated systems with unknown sensor and actuator faults.INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE,11. |
| MLA | Ji, Ning,et al."Sliding mode control based on RBF neural network for a class of underactuated systems with unknown sensor and actuator faults".INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE (2020):11. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。


