Predicting distant metastasis and chemotherapy benefit in locally advanced rectal cancer
文献类型:期刊论文
作者 | Liu, Zhenyu1,7,9![]() |
刊名 | NATURE COMMUNICATIONS
![]() |
出版日期 | 2020-08-27 |
卷号 | 11期号:1页码:11 |
ISSN号 | 2041-1723 |
DOI | 10.1038/s41467-020-18162-9 |
通讯作者 | Wang, Meiyun(mywang@ha.edu.cn) ; Cai, Guoxiang(gxcai@fudan.edu.cn) ; Tian, Jie(jie.tian@ia.ac.cn) |
英文摘要 | Distant metastasis (DM) is the main cause of treatment failure in locally advanced rectal cancer. Adjuvant chemotherapy is usually used for distant control. However, not all patients can benefit from adjuvant chemotherapy, and particularly, some patients may even get worse outcomes after the treatment. We develop and validate an MRI-based radiomic signature (RS) for prediction of DM within a multicenter dataset. The RS is proved to be an independent prognostic factor as it not only demonstrates good accuracy for discriminating patients into high and low risk of DM in all the four cohorts, but also outperforms clinical models. Within the stratified analysis, good chemotherapy efficacy is observed for patients with pN2 disease and low RS, whereas poor chemotherapy efficacy is detected in patients with pT1-2 or pN0 disease and high RS. The RS may help individualized treatment planning to select patients who may benefit from adjuvant chemotherapy for distant control. Distant metastasis (DM) is the main cause of treatment failure in locally advanced rectal cancer. Here, the authors developed and validated a radiomic signature (RS) for prediction of DM within a multicenter dataset, and suggest that it may help with stratification of patients who might benefit from adjuvant chemotherapy for DM. |
WOS关键词 | PREOPERATIVE CHEMORADIOTHERAPY ; NEOADJUVANT CHEMORADIATION ; RADIOMIC SIGNATURE ; FOLLOW-UP ; SURVIVAL ; RADIOTHERAPY ; MULTICENTER ; BIOMARKER ; BRIDGE ; PET/CT |
资助项目 | National Natural Science Foundation of China[81922040] ; National Natural Science Foundation of China[81930053] ; National Natural Science Foundation of China[81227901] ; National Natural Science Foundation of China[81971589] ; National Natural Science Foundation of China[81720108021] ; National Natural Science Foundation of China[81527805] ; Beijing Natural Science Foundation[7182109] ; National Key Research and Development Plan of China[2017YFA0205200] ; National Key Research and Development Plan of China[2017YFE0103600] ; Youth Innovation Promotion Association CAS[2019136] ; Zhongyuan Thousand Talents Plan Project-Basic Research Leader Talent[ZYQR201810117] |
WOS研究方向 | Science & Technology - Other Topics |
语种 | 英语 |
WOS记录号 | WOS:000567932900007 |
出版者 | NATURE PUBLISHING GROUP |
资助机构 | National Natural Science Foundation of China ; Beijing Natural Science Foundation ; National Key Research and Development Plan of China ; Youth Innovation Promotion Association CAS ; Zhongyuan Thousand Talents Plan Project-Basic Research Leader Talent |
源URL | [http://ir.ia.ac.cn/handle/173211/41949] ![]() |
专题 | 自动化研究所_中国科学院分子影像重点实验室 |
通讯作者 | Wang, Meiyun; Cai, Guoxiang; Tian, Jie |
作者单位 | 1.Chinese Acad Sci, Inst Automat, CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China 2.Zhengzhou Univ, Henan Prov Peoples Hosp, Dept Radiol, Zhengzhou 450003, Peoples R China 3.Zhengzhou Univ, Peoples Hosp, Zhengzhou 450003, Peoples R China 4.Kunming Med Univ, Dept Radiol, Affiliated Hosp 3, Yunnan Canc Hosp, Kunming 650031, Yunnan, Peoples R China 5.Chinese Acad Med Sci & Peking Union Med Coll, Natl Clin Res Ctr Canc, Dept Diagnost Radiol, Natl Canc Ctr,Canc Hosp, Beijing 100021, Peoples R China 6.Sun Yat Sen Univ, Affiliated Hosp 6, Dept Radiol, Guangzhou 510655, Peoples R China 7.Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100080, Peoples R China 8.Fudan Univ, Dept Colorectal Surg, Shanghai Canc Ctr, Shanghai 200032, Peoples R China 9.Chinese Acad Sci, State Key Lab Management & Control Complex Syst, CAS Key Lab Mol Imaging, Beijing Key Lab Mol Imaging,Inst Automat, Beijing 100190, Peoples R China 10.Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med & Engn, Beijing 100191, Peoples R China |
推荐引用方式 GB/T 7714 | Liu, Zhenyu,Meng, Xiaochun,Zhang, Hongmei,et al. Predicting distant metastasis and chemotherapy benefit in locally advanced rectal cancer[J]. NATURE COMMUNICATIONS,2020,11(1):11. |
APA | Liu, Zhenyu.,Meng, Xiaochun.,Zhang, Hongmei.,Li, Zhenhui.,Liu, Jiangang.,...&Tian, Jie.(2020).Predicting distant metastasis and chemotherapy benefit in locally advanced rectal cancer.NATURE COMMUNICATIONS,11(1),11. |
MLA | Liu, Zhenyu,et al."Predicting distant metastasis and chemotherapy benefit in locally advanced rectal cancer".NATURE COMMUNICATIONS 11.1(2020):11. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。