PredictFP2: A New Computational Model to Predict Fusion Peptide Domain in All Retroviruses
文献类型:期刊论文
作者 | Wu, Sijia1; Wu, Xiaoming1; Tian, Jie3![]() |
刊名 | IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
![]() |
出版日期 | 2020-09-01 |
卷号 | 17期号:5页码:1714-1720 |
关键词 | Benchmark testing Amino acids Support vector machines Computational modeling Predictive models Cells (biology) Databases Fusion peptide prediction FP distribution hydrophobicity retrovirus support vector machine |
ISSN号 | 1545-5963 |
DOI | 10.1109/TCBB.2019.2898943 |
通讯作者 | Wu, Sijia(wusjia@xidian.edu.cn) ; Huang, Liyu(huangly@mail.xidian.edu.cn) |
英文摘要 | Fusion peptide (FP) is a pivotal domain for the entry of retrovirus into host cells to continue self-replication. The crucial role indicates that FP is a promising drug target for therapeutic intervention. A FP model proposed in our previous work is relatively not efficient to predict FP in retroviruses. Thus in this work, we come up with a new computational model to predict FP domains in all the retroviruses. It basically predicts FP domains through recognizing their start and end sites separately with SVM method combing the hydrophobicity knowledge of the subdomain around furin cleavage site. The classification accuracy rates are 91.91, 91.20 and 89.13 percent respectively corresponding to jack-knife, 10-fold cross-validation and 5-fold cross-validation test. Second, this model discovered 69,753 and 493 putative FPs after scanning amino acid sequences and HERV DNA sequences both without FP annotations. Subsequently, a statistical analysis was performed on the 69,753 putative FP sequences, which confirms that FP is a hydrophobic domain. Lastly, we depicted the distribution of the 493 putative FP sequences on each human chromosome and each HERV family, which shows that FP of HERV probably has chromosome and family preference. |
资助项目 | National Key Research and Development Program of China[2017YFA0205202] ; China Postdoctoral Science Foundation[2018M643583] ; Fundamental Research Funds for the Central Universities - National Natural Science Foundation of China[61672422] ; Fundamental Research Funds for the Central Universities - National Natural Science Foundation of China[U1401255] |
WOS研究方向 | Biochemistry & Molecular Biology ; Computer Science ; Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000576418300023 |
出版者 | IEEE COMPUTER SOC |
资助机构 | National Key Research and Development Program of China ; China Postdoctoral Science Foundation ; Fundamental Research Funds for the Central Universities - National Natural Science Foundation of China |
源URL | [http://ir.ia.ac.cn/handle/173211/42075] ![]() |
专题 | 自动化研究所_中国科学院分子影像重点实验室 |
通讯作者 | Wu, Sijia; Huang, Liyu |
作者单位 | 1.Xidian Univ, Sch Life Sci & Technol, Xian 710049, Shaanxi, Peoples R China 2.Wake Forest Sch Med, Dept Radiol, Med Ctr Blvd, Winston Salem, NC 27157 USA 3.Chinese Acad Sci, Inst Automat, Beijing, Peoples R China |
推荐引用方式 GB/T 7714 | Wu, Sijia,Wu, Xiaoming,Tian, Jie,et al. PredictFP2: A New Computational Model to Predict Fusion Peptide Domain in All Retroviruses[J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,2020,17(5):1714-1720. |
APA | Wu, Sijia,Wu, Xiaoming,Tian, Jie,Zhou, Xiaobo,&Huang, Liyu.(2020).PredictFP2: A New Computational Model to Predict Fusion Peptide Domain in All Retroviruses.IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,17(5),1714-1720. |
MLA | Wu, Sijia,et al."PredictFP2: A New Computational Model to Predict Fusion Peptide Domain in All Retroviruses".IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 17.5(2020):1714-1720. |
入库方式: OAI收割
来源:自动化研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。