中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Edge-sited Fe-N-4 atomic species improve oxygen reduction activity via boosting O-2 dissociation

文献类型:期刊论文

作者Ma, RG; Lin, GX; Ju, QJ; Tang, W; Chen, G; Chen, ZH; Liu, Q; Yang, MH; Lu, YF; Wang, JC
刊名APPLIED CATALYSIS B-ENVIRONMENTAL
出版日期2020-05-15
ISSN号0926-3373
DOI10.1016/j.apcatb.2020.118593
文献子类Article
英文摘要The development of low-cost, efficient, and stable electrocatalysts toward the oxygen reduction reaction (ORR) is urgently demanded for scalable applications in fuel cells or zinc-air batteries (ZABs), but still remains a challenge. Herein, carbon materials with edge-sited Fe-N-4 atomic species (E-FeNC) were synthesized from pyrolysis of abundant Fe-containing biomass using silica spheres as hard template. The E-FeNC delivers remarkable ORB. performance with a half-wave potential of 0.875 V (vs. reversible hydrogen electrode (RHE)), much better than Pt/C (0.859 V), attributed to atomically dispersed Fe-N-4 moieties nearby graphitic edges. The density functional calculations reveal that O-2 molecule adsorbs on Fe-N-4 sites with an energetically favorable side-on configuration with elongated O=O bond rather than end-on form, boosting the subsequent dissociation pathway with a direct 4e reaction route. Using E-FeNC as cathode catalyst, the primary ZAB exhibits high specific capacity of 710 mA h g(-1) and power density of 151.6 mW cm(-2) . The rechargeable ZAB by coupling E-FeNC and NiFe layered double hydroxide (LDH) demonstrates long-term capacity retention over 200 h, superior to that using noble Pt/C and RuO2. This unique carbon material with atomically dispersed metal sites opens up an avenue for the design and engineering of electrocatalysts for energy conversion systems.
WOS关键词HIGH ELECTROCATALYTIC ACTIVITY ; DOPED CARBON ; FREE CATALYST ; FE ; NITROGEN ; PERFORMANCE ; GRAPHENE ; CO
WOS研究方向Chemistry ; Engineering
语种英语
出版者ELSEVIER
源URL[http://ir.sic.ac.cn/handle/331005/28068]  
专题中国科学院上海硅酸盐研究所
推荐引用方式
GB/T 7714
Ma, RG,Lin, GX,Ju, QJ,et al. Edge-sited Fe-N-4 atomic species improve oxygen reduction activity via boosting O-2 dissociation[J]. APPLIED CATALYSIS B-ENVIRONMENTAL,2020.
APA Ma, RG.,Lin, GX.,Ju, QJ.,Tang, W.,Chen, G.,...&Wang, JC.(2020).Edge-sited Fe-N-4 atomic species improve oxygen reduction activity via boosting O-2 dissociation.APPLIED CATALYSIS B-ENVIRONMENTAL.
MLA Ma, RG,et al."Edge-sited Fe-N-4 atomic species improve oxygen reduction activity via boosting O-2 dissociation".APPLIED CATALYSIS B-ENVIRONMENTAL (2020).

入库方式: OAI收割

来源:上海硅酸盐研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。