中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Enhancement in photoelectrochemical ability via re-engineering the band gap of multi-podal titania nanotubes on functionalizing with copper oxide nano-cubes

文献类型:期刊论文

作者Boda, MA; Shah, MA; Khan, M; Cirak, C
刊名APPLIED SURFACE SCIENCE
出版日期2020
ISSN号0169-4332
DOI10.1016/j.apsusc.2019.143965
文献子类Article; Proceedings Paper
英文摘要In this study, multi-podal titania nanotube array (anatase) were fabricated via electrochemical anodization technique on employing third generation electrolyte with suitable and sharp optimization of every anodization parameter. In comparison to conventional titania nanotubes, these nanotubes offer sufficient nanotube wall/electrolyte interface and thereby makes the appreciable reduction in electron hole pair recombination rate by immediate involvement of holes and electrons in oxidation and reduction process, respectively. Furthermore, 85 nm diameter variation in these nanotubes from base diameter 263 nm to top diameter 348 nm makes the incoming light to undergo through graded refractive index which in corresponding increases their light harnessing ability. Although morphological advantage of these nanotubes is being efficiently harnessed in the scattering of incident light but the large band gap 3.2 eV still confines their utility to UV region only. To increase their photo-electrochemical potential under visible light as well, these nanotubes were functionalized suitably with Cu2O nano-cubes without disturbing the nanotube morphology. Under the analysis of their photo-electrochemical potential, the photocurrent density recorded for bare and Cu2O functionalized multi-podal titania nanotube array under visible light source 300W Xenon lamp (1 sun illumination) was 0.27 mAcm(-2) and 0.39 mAcm(-2), respectively. The enhancement of similar to 45% in photocurrent density under visible light illumination is attributed to suitable band edge positions in Cu2O with respect to the band edge positions in TiO2 which in corresponding leads the formation of effective visible light active band gap in the resulting hybrid structure.
WOS关键词ANODIZATION PARAMETERS ; TIO2 NANOTUBES ; ARRAYS ; WATER ; FABRICATION ; POSITIONS ; CU2O
WOS研究方向Chemistry ; Materials Science ; Physics
语种英语
出版者ELSEVIER
源URL[http://ir.sic.ac.cn/handle/331005/28406]  
专题中国科学院上海硅酸盐研究所
推荐引用方式
GB/T 7714
Boda, MA,Shah, MA,Khan, M,et al. Enhancement in photoelectrochemical ability via re-engineering the band gap of multi-podal titania nanotubes on functionalizing with copper oxide nano-cubes[J]. APPLIED SURFACE SCIENCE,2020.
APA Boda, MA,Shah, MA,Khan, M,&Cirak, C.(2020).Enhancement in photoelectrochemical ability via re-engineering the band gap of multi-podal titania nanotubes on functionalizing with copper oxide nano-cubes.APPLIED SURFACE SCIENCE.
MLA Boda, MA,et al."Enhancement in photoelectrochemical ability via re-engineering the band gap of multi-podal titania nanotubes on functionalizing with copper oxide nano-cubes".APPLIED SURFACE SCIENCE (2020).

入库方式: OAI收割

来源:上海硅酸盐研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。