中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The activity enhancement of photocatalytic water splitting by F- preoccupation on Pt(100) and Pt(111) co-catalyst facets.

文献类型:期刊论文

作者Meng Wang1,2,3; Hongxia Liu1,2,3; Jiantai Ma2; Gongxuan Lu3
刊名Applied Catalysis B: Environmental
出版日期2020-06
期号266页码:118647
英文摘要

The reversible hydrogen and oxygen recombination reaction in semiconductor dispersion highly impede the yield increase of photocatalytic water splitting to hydrogen and oxygen. In order to inhibit such reverse reaction, it is necessary to reduce the degree of hydrogen and oxygen adsorption and activiation over co-catalyst on semiconductor. It is known that partial occupation of Pt sites by halogen ions with high electronegativity can decrease the adsorption and activation degree of hydrogen and oxygen molecules over Pt/TiO2, by this way, hydrogen and oxygen recombination reaction can be significantly inhibited, and the overall water splitting activity can be remarkably enhanced. Nevertheless, the detail inhibition mechanism on the reverse recombination reaction by halogen ions occupation on different Pt sites is still unclear. In the present work, by comparing the fluorine ions occupation on different Pt facets, we found that the fluorine ions occupation could decrease the numbers of adsorption sites on Pt(100) and Pt(111) surface. On Pt(100) facet, a fluorine ion occupation affect the four adjacent adsorption sites for H2 and O2 molecules adsorption, while, on Pt(111) surface, a fluorine ion occupation could affect the six adjacent adsorption sites for H2 and O2 molecules adsorption. The difference of fluorine ions occupation on the Pt(100) and Pt(111) facets led to the different adsorption strength of hydrogen and oxygen molecules, which further induced the activiation difference of hydrogen and oxygen on Pt co-catalyst. The results of density functional theory (DFT) calculation indicated that the hydrogen and oxygen adsorption energies on F/Pt(100) were higher than that on F/Pt(111) surface. The H2/O2-TPD, cyclic voltammetry and in-situ XPS experimental results also verified that the hydrogen and oxygen adsorption on F/Pt(100) surface was stronger than that of F/Pt(111) surface. The hydrogen and oxygen recombination experimental results showed that the hydrogen and oxygen recombination rates over F/Pt(100) surface was higher than that of F/Pt(111) surface. Upon light irradiation, the F/Pt(100)/TiO2 photocatalyst exhibited lower activity for overall water splitting than F/Pt(111)/TiO2 photocatalyst. Results in this paper provide a new avenue to promote seimiconductor catalyst for over-all water splitting by tuning the adsorption sites of hydrogen and oxygen on co-catalyst surface.

语种英语
源URL[http://ir.licp.cn/handle/362003/26592]  
专题兰州化学物理研究所_OSSO国家重点实验室
通讯作者Gongxuan Lu
作者单位1.College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
推荐引用方式
GB/T 7714
Meng Wang,Hongxia Liu,Jiantai Ma,et al. The activity enhancement of photocatalytic water splitting by F- preoccupation on Pt(100) and Pt(111) co-catalyst facets.[J]. Applied Catalysis B: Environmental,2020(266):118647.
APA Meng Wang,Hongxia Liu,Jiantai Ma,&Gongxuan Lu.(2020).The activity enhancement of photocatalytic water splitting by F- preoccupation on Pt(100) and Pt(111) co-catalyst facets..Applied Catalysis B: Environmental(266),118647.
MLA Meng Wang,et al."The activity enhancement of photocatalytic water splitting by F- preoccupation on Pt(100) and Pt(111) co-catalyst facets.".Applied Catalysis B: Environmental .266(2020):118647.

入库方式: OAI收割

来源:兰州化学物理研究所

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。