Liouville type theorems for elliptic equations with Dirichlet conditions in exterior domains
文献类型:期刊论文
作者 | Dai, Wei2,3; Qin, Guolin1,4 |
刊名 | JOURNAL OF DIFFERENTIAL EQUATIONS
![]() |
出版日期 | 2020-10-15 |
卷号 | 269期号:9页码:7231-7252 |
关键词 | The method of scaling spheres Hardy-H?non type equations Liouville theorems Nonnegative solutions Exterior domains |
ISSN号 | 0022-0396 |
DOI | 10.1016/j.jde.2020.05.026 |
英文摘要 | In this paper, we are mainly concerned with the Dirichlet problems in exterior domains for the following elliptic equations: with arbitrary r > 0, where 11 > 2, 0 < a < 2 and f (x, u) satisfies some assumptions. A typical case is the Hardy-Henon type equations in exterior domains. We first derive the equivalence between O.1) and the corresponding integral equations |
资助项目 | NNSF of China[11971049] ; NNSF of China[11501021] ; Fundamental Research Funds for the Central Universities[YWF-19-BJ-J-317] ; State Scholarship Fund of China[201806025011] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000544102900029 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/51717] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Qin, Guolin |
作者单位 | 1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 2.Beihang Univ BUAA, Sch Math Sci, Beijing 100083, Peoples R China 3.Univ Paris 13, UMR 7539, LAGA, Paris, France 4.Chinese Acad Sci, Inst Appl Math, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Dai, Wei,Qin, Guolin. Liouville type theorems for elliptic equations with Dirichlet conditions in exterior domains[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2020,269(9):7231-7252. |
APA | Dai, Wei,&Qin, Guolin.(2020).Liouville type theorems for elliptic equations with Dirichlet conditions in exterior domains.JOURNAL OF DIFFERENTIAL EQUATIONS,269(9),7231-7252. |
MLA | Dai, Wei,et al."Liouville type theorems for elliptic equations with Dirichlet conditions in exterior domains".JOURNAL OF DIFFERENTIAL EQUATIONS 269.9(2020):7231-7252. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。