中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
ADAPTIVE LOW-NONNEGATIVE-RANK APPROXIMATION FOR STATE AGGREGATION OF MARKOV CHAINS

文献类型:期刊论文

作者Duan, Yaqi1; Wang, Mengdi1; Wen, Zaiwen2; Yuan, Yaxiang3
刊名SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS
出版日期2020
卷号41期号:1页码:244-278
关键词Markov chain state aggregation nonnegative matrix factorization atomic norm proximal alternating linearized minimization
ISSN号0895-4798
DOI10.1137/18M1220790
英文摘要This paper develops a low-nonnegative-rank approximation method to identify the state aggregation structure of a finite-state Markov chain under an assumption that the state space can be mapped into a handful of metastates. The number of metastates is characterized by the nonnegative rank of the Markov transition matrix. Motivated by the success of the nuclear norm relaxation in low-rank minimization problems, we propose an atomic regularizer as a convex surrogate for the nonnegative rank and formulate a convex optimization problem. Because the atomic regularizer itself is not computationally tractable, we instead solve a sequence of problems involving a nonnegative factorization of the Markov transition matrices by using the proximal alternating linearized minimization method. Two methods for adjusting the rank of factorization are developed so that local minima are escaped. One is to append an additional column to the factorized matrices, which can be interpreted as an approximation of a negative subgradient step. The other is to reduce redundant dimensions by means of linear combinations. Overall, the proposed algorithm very likely converges to the global solution. The efficiency and statistical properties of our approach are illustrated on synthetic data. We also apply our state aggregation algorithm on a Manhattan transportation data set and make extensive comparisons with an existing method.
资助项目National Natural Science Foundation of China[11831002] ; National Natural Science Foundation of China[11421101] ; Beijing Academy of Artificial Intelligence (BAAI)
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000546980200011
出版者SIAM PUBLICATIONS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/51723]  
专题中国科学院数学与系统科学研究院
通讯作者Duan, Yaqi
作者单位1.Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
2.Peking Univ, Natl Engn Lab Big Data Anal & Applicat, Beijing Int Ctr Math Res, Ctr Data Sci, Beijing, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, State Key Lab Sci & Engn Comp, Beijing, Peoples R China
推荐引用方式
GB/T 7714
Duan, Yaqi,Wang, Mengdi,Wen, Zaiwen,et al. ADAPTIVE LOW-NONNEGATIVE-RANK APPROXIMATION FOR STATE AGGREGATION OF MARKOV CHAINS[J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS,2020,41(1):244-278.
APA Duan, Yaqi,Wang, Mengdi,Wen, Zaiwen,&Yuan, Yaxiang.(2020).ADAPTIVE LOW-NONNEGATIVE-RANK APPROXIMATION FOR STATE AGGREGATION OF MARKOV CHAINS.SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS,41(1),244-278.
MLA Duan, Yaqi,et al."ADAPTIVE LOW-NONNEGATIVE-RANK APPROXIMATION FOR STATE AGGREGATION OF MARKOV CHAINS".SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS 41.1(2020):244-278.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。