中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Scalar V-soliton equation and Kahler-Ricci flow on symplectic quotients

文献类型:期刊论文

作者Li, Chang
刊名ADVANCES IN MATHEMATICS
出版日期2020-09-16
卷号371页码:23
关键词Kahler-Ricci flow V-soliton equation Kahler manifold A priori estimates
ISSN号0001-8708
DOI10.1016/j.aim.2020.107229
英文摘要In this paper, we consider the V-soliton equation which is a degenerate fully nonlinear equation introduced by La Nave and Tian in their work on Kahler-Ricci flow on symplectic quotients. One can apply the interpretation to study finite time singularities of the Kahler-Ricci flow. As in the case of Kahler-Einstein metrics, we can also reduce the V-soliton equation to a scalar equation on Kahler potentials, which is of Monge-Ampere type. We formulate some preliminary estimates for such a scalar equation on a compact Kahler manifold M. (C) 2020 Elsevier Inc. All rights reserved.
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000549165500003
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/51804]  
专题中国科学院数学与系统科学研究院
通讯作者Li, Chang
作者单位Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Li, Chang. Scalar V-soliton equation and Kahler-Ricci flow on symplectic quotients[J]. ADVANCES IN MATHEMATICS,2020,371:23.
APA Li, Chang.(2020).Scalar V-soliton equation and Kahler-Ricci flow on symplectic quotients.ADVANCES IN MATHEMATICS,371,23.
MLA Li, Chang."Scalar V-soliton equation and Kahler-Ricci flow on symplectic quotients".ADVANCES IN MATHEMATICS 371(2020):23.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。