Scalar V-soliton equation and Kahler-Ricci flow on symplectic quotients
文献类型:期刊论文
作者 | Li, Chang |
刊名 | ADVANCES IN MATHEMATICS
![]() |
出版日期 | 2020-09-16 |
卷号 | 371页码:23 |
关键词 | Kahler-Ricci flow V-soliton equation Kahler manifold A priori estimates |
ISSN号 | 0001-8708 |
DOI | 10.1016/j.aim.2020.107229 |
英文摘要 | In this paper, we consider the V-soliton equation which is a degenerate fully nonlinear equation introduced by La Nave and Tian in their work on Kahler-Ricci flow on symplectic quotients. One can apply the interpretation to study finite time singularities of the Kahler-Ricci flow. As in the case of Kahler-Einstein metrics, we can also reduce the V-soliton equation to a scalar equation on Kahler potentials, which is of Monge-Ampere type. We formulate some preliminary estimates for such a scalar equation on a compact Kahler manifold M. (C) 2020 Elsevier Inc. All rights reserved. |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000549165500003 |
出版者 | ACADEMIC PRESS INC ELSEVIER SCIENCE |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/51804] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Li, Chang |
作者单位 | Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Chang. Scalar V-soliton equation and Kahler-Ricci flow on symplectic quotients[J]. ADVANCES IN MATHEMATICS,2020,371:23. |
APA | Li, Chang.(2020).Scalar V-soliton equation and Kahler-Ricci flow on symplectic quotients.ADVANCES IN MATHEMATICS,371,23. |
MLA | Li, Chang."Scalar V-soliton equation and Kahler-Ricci flow on symplectic quotients".ADVANCES IN MATHEMATICS 371(2020):23. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。