RATIONAL SPECTRAL METHODS FOR PDEs INVOLVING FRACTIONAL LAPLACIAN IN UNBOUNDED DOMAINS
文献类型:期刊论文
作者 | Tang, Tao5,6; Wang, Li-Lian1; Yuan, Huifang2; Zhou, Tao3,4 |
刊名 | SIAM JOURNAL ON SCIENTIFIC COMPUTING
![]() |
出版日期 | 2020 |
卷号 | 42期号:2页码:A585-A611 |
关键词 | fractional Laplacian Gegenbauer polynomials modified rational functions unbounded domains Fourier transforms spectral methods |
ISSN号 | 1064-8275 |
DOI | 10.1137/19M1244299 |
英文摘要 | Many PDEs involving fractional Laplacian are naturally set in unbounded domains with underlying solutions decaying slowly and subject to certain power law. Their numerical solutions are underexplored. This paper aims at developing accurate spectral methods using rational basis (or modified mapped Gegenbauer functions) for such models in unbounded domains. The main building block of the spectral algorithms is the explicit representations for the Fourier transform and fractional Laplacian of the rational basis, derived from some useful integral identities related to modified Bessel functions. With these at our disposal, we can construct rational spectral-Galerkin and direct collocation schemes by precomputing the associated fractional differentiation matrices. We obtain optimal error estimates of rational spectral approximation in the fractional Sobolev spaces and analyze the optimal convergence of the proposed Galerkin scheme. We also provide ample numerical results to show that the rational method outperforms the Hermite function approach. |
资助项目 | NSF of China[11822111] ; NSF of China[11688101] ; NSF of China[11571351] ; NSF of China[11731006] ; Science Challenge Project[TZ2018001] ; Singapore MOE AcRF Tier 2 grants[MOE2018-T2-1-059] ; Singapore MOE AcRF Tier 2 grants[MOE2017-T2-2-144] ; Hong Kong Ph.D. fellowship ; Youth Innovation Promotion Association (CAS) |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000551251700015 |
出版者 | SIAM PUBLICATIONS |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/51882] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Tang, Tao |
作者单位 | 1.Nanyang Technol Univ, Sch Phys & Math Sci, Div Math Sci, Singapore 637371, Singapore 2.Hong Kong Baptist Univ, Dept Math, Hong Kong, Peoples R China 3.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, LSEC, Beijing, Peoples R China 4.Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, NCMIS, Beijing, Peoples R China 5.BNUH KBU United Int Coll, Div Sci & Technol, Zhuhai, Guangdong, Peoples R China 6.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Shenzhen, Peoples R China |
推荐引用方式 GB/T 7714 | Tang, Tao,Wang, Li-Lian,Yuan, Huifang,et al. RATIONAL SPECTRAL METHODS FOR PDEs INVOLVING FRACTIONAL LAPLACIAN IN UNBOUNDED DOMAINS[J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING,2020,42(2):A585-A611. |
APA | Tang, Tao,Wang, Li-Lian,Yuan, Huifang,&Zhou, Tao.(2020).RATIONAL SPECTRAL METHODS FOR PDEs INVOLVING FRACTIONAL LAPLACIAN IN UNBOUNDED DOMAINS.SIAM JOURNAL ON SCIENTIFIC COMPUTING,42(2),A585-A611. |
MLA | Tang, Tao,et al."RATIONAL SPECTRAL METHODS FOR PDEs INVOLVING FRACTIONAL LAPLACIAN IN UNBOUNDED DOMAINS".SIAM JOURNAL ON SCIENTIFIC COMPUTING 42.2(2020):A585-A611. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。