Geometrically distinct solutions of nonlinear elliptic systems with periodic potentials
文献类型:期刊论文
作者 | Yang, Zhipeng2; Yu, Yuanyang1 |
刊名 | ARCHIV DER MATHEMATIK
![]() |
出版日期 | 2020-10-01 |
页码 | 14 |
关键词 | Nonlinear elliptic systems Geometrically distinct solutions Variational methods |
ISSN号 | 0003-889X |
DOI | 10.1007/s00013-020-01519-3 |
英文摘要 | In this paper, we study the following nonlinear elliptic systems: {-Delta u(1) + V-1(x)u(1) = partial derivative F-u1(x,u) x is an element of R-N, -Delta u(2)+V-2(x)u(2)= partial derivative F-u2(x,u) x is an element of R-N, where u = (u(1), u(2)) : R-N -> R-2, F and V-i are periodic in x(1), ... , x(N) and 0 is not an element of sigma(-Delta + V-i) for i = 1, 2, where sigma(-Delta+ V-i) stands for the spectrum of the Schrodinger operator -Delta+ V-i. Under some suitable assumptions on F and Vi, we obtain the existence of infinitely many geometrically distinct solutions. The result presented in this paper generalizes the result in Szulkin and Weth (J Funct Anal 257(12):3802-3822, 2009). |
资助项目 | Projekt DEAL |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000574356700001 |
出版者 | SPRINGER BASEL AG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/52266] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Yang, Zhipeng |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Inst Math, Beijing 100190, Peoples R China 2.Georg August Univ Gottingen, Math Inst, D-37073 Gottingen, Germany |
推荐引用方式 GB/T 7714 | Yang, Zhipeng,Yu, Yuanyang. Geometrically distinct solutions of nonlinear elliptic systems with periodic potentials[J]. ARCHIV DER MATHEMATIK,2020:14. |
APA | Yang, Zhipeng,&Yu, Yuanyang.(2020).Geometrically distinct solutions of nonlinear elliptic systems with periodic potentials.ARCHIV DER MATHEMATIK,14. |
MLA | Yang, Zhipeng,et al."Geometrically distinct solutions of nonlinear elliptic systems with periodic potentials".ARCHIV DER MATHEMATIK (2020):14. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。