中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Absolute continuity and numerical approximation of stochastic Cahn-Hilliard equation with unbounded noise diffusion

文献类型:期刊论文

作者Cui, Jianbo1; Hong, Jialin2,3
刊名JOURNAL OF DIFFERENTIAL EQUATIONS
出版日期2020-11-15
卷号269期号:11页码:10143-10180
关键词Stochastic Cahn-Hilliard equation Unbounded noise diffusion Malliavin calculus Numerical approximation Strong convergence rate
ISSN号0022-0396
DOI10.1016/j.jde.2020.07.007
英文摘要In this article, we consider the absolute continuity and numerical approximation of the solution of the stochastic Cahn-Hilliard equation with unbounded noise diffusion. We first obtain the Holder continuity and Malliavin differentiability of the solution of the stochastic Cahn-Hilliard equation by using the strong convergence of the spectral Gakerkin approximation. Then we prove the existence and strict positivity of the density function of the law of the exact solution for the stochastic Cahn-Hilliard equation with sublinear growth diffusion coefficient, which fills a gap for the existed result when the diffusion coefficient satisfies a growth condition of order 1/3 < alpha < 1. To approximate the density function of the exact solution, we propose a full discretization based on the spatial spectral Galerkin approximation and the temporal drift implicit Euler scheme. Furthermore, a general framework for deriving the strong convergence rate of the full discretization is developed based on the variation approach and the factorization method. Consequently, we obtain the sharp mean square convergence rates in both time and space via Sobolev interpolation inequalities and semigroup theories. To the best of our knowledge, this is the first result on the convergence rate of full discretizations for the considered equation. (C) 2020 Elsevier Inc. All rights reserved.
资助项目National Natural Science Foundation of China[91530118] ; National Natural Science Foundation of China[91130003] ; National Natural Science Foundation of China[11021101] ; National Natural Science Foundation of China[91630312] ; National Natural Science Foundation of China[11290142]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000575391800038
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/52290]  
专题中国科学院数学与系统科学研究院
通讯作者Cui, Jianbo
作者单位1.Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
2.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
3.Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Cui, Jianbo,Hong, Jialin. Absolute continuity and numerical approximation of stochastic Cahn-Hilliard equation with unbounded noise diffusion[J]. JOURNAL OF DIFFERENTIAL EQUATIONS,2020,269(11):10143-10180.
APA Cui, Jianbo,&Hong, Jialin.(2020).Absolute continuity and numerical approximation of stochastic Cahn-Hilliard equation with unbounded noise diffusion.JOURNAL OF DIFFERENTIAL EQUATIONS,269(11),10143-10180.
MLA Cui, Jianbo,et al."Absolute continuity and numerical approximation of stochastic Cahn-Hilliard equation with unbounded noise diffusion".JOURNAL OF DIFFERENTIAL EQUATIONS 269.11(2020):10143-10180.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。