中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Unsupervised topological alignment for single-cell multi-omics integration

文献类型:期刊论文

作者Cao, Kai1,2; Bai, Xiangqi1,2; Hong, Yiguang1,2; Wan, Lin1,2
刊名BIOINFORMATICS
出版日期2020-07-01
卷号36页码:48-56
ISSN号1367-4803
DOI10.1093/bioinformatics/btaa443
英文摘要Motivation: Single-cell multi-omics data provide a comprehensive molecular view of cells. However, single-cell multi-omics datasets consist of unpaired cells measured with distinct unmatched features across modalities, making data integration challenging. Results: In this study, we present a novel algorithm, termed UnionCom, for the unsupervised topological alignment of single-cell multi-omics integration. UnionCom does not require any correspondence information, either among cells or among features. It first embeds the intrinsic low-dimensional structure of each single-cell dataset into a distance matrix of cells within the same dataset and then aligns the cells across single-cell multi-omics datasets by matching the distance matrices via a matrix optimization method. Finally, it projects the distinct unmatched features across single-cell datasets into a common embedding space for feature comparability of the aligned cells. To match the complex non-linear geometrical distorted low-dimensional structures across datasets, UnionCom proposes and adjusts a global scaling parameter on distance matrices for aligning similar topological structures. It does not require one-to-one correspondence among cells across datasets, and it can accommodate samples with dataset-specific cell types. UnionCom outperforms state-of-the-art methods on both simulated and real single-cell multi-omics datasets. UnionCom is robust to parameter choices, as well as subsampling of features.
资助项目NSFC[11571349] ; NSFC[91630314] ; NSFC[61733018] ; NCMIS of CAS ; LSC of CAS ; Youth Innovation Promotion Association of CAS
WOS研究方向Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics
语种英语
WOS记录号WOS:000579894600007
出版者OXFORD UNIV PRESS
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/52313]  
专题中国科学院数学与系统科学研究院
通讯作者Wan, Lin
作者单位1.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
推荐引用方式
GB/T 7714
Cao, Kai,Bai, Xiangqi,Hong, Yiguang,et al. Unsupervised topological alignment for single-cell multi-omics integration[J]. BIOINFORMATICS,2020,36:48-56.
APA Cao, Kai,Bai, Xiangqi,Hong, Yiguang,&Wan, Lin.(2020).Unsupervised topological alignment for single-cell multi-omics integration.BIOINFORMATICS,36,48-56.
MLA Cao, Kai,et al."Unsupervised topological alignment for single-cell multi-omics integration".BIOINFORMATICS 36(2020):48-56.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。