The Dirichlet Problem on Almost Hermitian Manifolds
文献类型:期刊论文
作者 | Li, Chang1; Zheng, Tao2 |
刊名 | JOURNAL OF GEOMETRIC ANALYSIS
![]() |
出版日期 | 2020-10-23 |
页码 | 29 |
关键词 | Dirichlet problem Monge– Ampè re type equation Degenerate Monge– Ampè re equation Almost Hermitian manifold A priori estimate |
ISSN号 | 1050-6926 |
DOI | 10.1007/s12220-020-00540-w |
英文摘要 | We prove second-order a priori estimate on the boundary for the Dirichlet problem of a class of fully nonlinear equations on compact almost Hermitian manifolds with smooth boundary. As applications, we solve the Dirichlet problem of the Monge-Ampere type equation and of the degenerate Monge-Ampere equation. |
资助项目 | China post-doctoral Grant[BX20200356] ; Beijing Institute of Technology |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000583451000003 |
出版者 | SPRINGER |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/52379] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
通讯作者 | Zheng, Tao |
作者单位 | 1.Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China 2.Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Chang,Zheng, Tao. The Dirichlet Problem on Almost Hermitian Manifolds[J]. JOURNAL OF GEOMETRIC ANALYSIS,2020:29. |
APA | Li, Chang,&Zheng, Tao.(2020).The Dirichlet Problem on Almost Hermitian Manifolds.JOURNAL OF GEOMETRIC ANALYSIS,29. |
MLA | Li, Chang,et al."The Dirichlet Problem on Almost Hermitian Manifolds".JOURNAL OF GEOMETRIC ANALYSIS (2020):29. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。