中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
The Dirichlet Problem on Almost Hermitian Manifolds

文献类型:期刊论文

作者Li, Chang1; Zheng, Tao2
刊名JOURNAL OF GEOMETRIC ANALYSIS
出版日期2020-10-23
页码29
关键词Dirichlet problem Monge– Ampè re type equation Degenerate Monge– Ampè re equation Almost Hermitian manifold A priori estimate
ISSN号1050-6926
DOI10.1007/s12220-020-00540-w
英文摘要We prove second-order a priori estimate on the boundary for the Dirichlet problem of a class of fully nonlinear equations on compact almost Hermitian manifolds with smooth boundary. As applications, we solve the Dirichlet problem of the Monge-Ampere type equation and of the degenerate Monge-Ampere equation.
资助项目China post-doctoral Grant[BX20200356] ; Beijing Institute of Technology
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000583451000003
出版者SPRINGER
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/52379]  
专题中国科学院数学与系统科学研究院
通讯作者Zheng, Tao
作者单位1.Chinese Acad Sci, Acad Math & Syst Sci, Hua Loo Keng Ctr Math Sci, Beijing 100190, Peoples R China
2.Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
推荐引用方式
GB/T 7714
Li, Chang,Zheng, Tao. The Dirichlet Problem on Almost Hermitian Manifolds[J]. JOURNAL OF GEOMETRIC ANALYSIS,2020:29.
APA Li, Chang,&Zheng, Tao.(2020).The Dirichlet Problem on Almost Hermitian Manifolds.JOURNAL OF GEOMETRIC ANALYSIS,29.
MLA Li, Chang,et al."The Dirichlet Problem on Almost Hermitian Manifolds".JOURNAL OF GEOMETRIC ANALYSIS (2020):29.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。