THE BEST L-2 NORM ERROR ESTIMATE OF LOWER ORDER FINITE ELEMENT METHODS FOR THE FOURTH ORDER PROBLEM
文献类型:期刊论文
作者 | Hu Jun2; Shi ZhongCi1 |
刊名 | JOURNAL OF COMPUTATIONAL MATHEMATICS
![]() |
出版日期 | 2012 |
卷号 | 30期号:5页码:449-460 |
关键词 | ELLIPTIC-EQUATIONS BOUNDS L-2 norm error estimate Energy norm error estimate Conforming Nonconforming The Kirchhoff plate |
ISSN号 | 0254-9409 |
其他题名 | THE BEST L2 NORM ERROR ESTIMATE OF LOWER ORDERFINITE ELEMENT METHODS FOR THE FOURTH ORDERPROBLEM |
英文摘要 | In the paper, we analyze the L-2 norm error estimate of lower order finite element methods for the fourth order problem. We prove that the best error estimate in the L-2 norm of the finite element solution is of second order, which can not be improved generally. The main ingredients are the saturation condition established for these elements and an identity for the error in the energy norm of the finite element solution. The result holds for most of the popular lower order finite element methods in the literature including: the Powell-Sabin C-1-P-2 macro element, the nonconforming Morley element, the C-1-Q(2) macro element, the nonconforming rectangle Morley element, and the nonconforming incomplete biquadratic element. In addition, the result actually applies to the nonconforming Adini element, the nonconforming Fraeijs de Veubeke elements, and the nonconforming Wang-Xu element and the Wang-Shi-Xu element provided that the saturation condition holds for them. This result solves one long standing problem in the literature: can the L-2 norm error estimate of lower order finite element methods of the fourth order problem be two order higher than the error estimate in the energy norm? |
资助项目 | [NSFC] ; [NSFC projection] ; [Chinesisch-Deutsches Zentrum project] |
语种 | 英语 |
CSCD记录号 | CSCD:4665765 |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/52834] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.中国科学院数学与系统科学研究院 2.北京大学 |
推荐引用方式 GB/T 7714 | Hu Jun,Shi ZhongCi. THE BEST L-2 NORM ERROR ESTIMATE OF LOWER ORDER FINITE ELEMENT METHODS FOR THE FOURTH ORDER PROBLEM[J]. JOURNAL OF COMPUTATIONAL MATHEMATICS,2012,30(5):449-460. |
APA | Hu Jun,&Shi ZhongCi.(2012).THE BEST L-2 NORM ERROR ESTIMATE OF LOWER ORDER FINITE ELEMENT METHODS FOR THE FOURTH ORDER PROBLEM.JOURNAL OF COMPUTATIONAL MATHEMATICS,30(5),449-460. |
MLA | Hu Jun,et al."THE BEST L-2 NORM ERROR ESTIMATE OF LOWER ORDER FINITE ELEMENT METHODS FOR THE FOURTH ORDER PROBLEM".JOURNAL OF COMPUTATIONAL MATHEMATICS 30.5(2012):449-460. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。