Spatial Nonparametric Regression Estimation: Non-isotropic Case
文献类型:期刊论文
作者 | Lu Zudi2; Chen Xing1 |
刊名 | Acta Mathematicae Applicatae Sinica
![]() |
出版日期 | 2002 |
卷号 | 18期号:4页码:641-656 |
关键词 | bandwidth kernel estimator mixing non-isotropic spatial data spatial conditional regression weak consistency and rates |
ISSN号 | 0168-9673 |
其他题名 | Spatial Nonparametric Regression Estimation: Non-isotropic Case |
英文摘要 | Data collected on the surface of the earth often has spatial interaction. In this paper, a non-isotropic mixing spatial data process is introduced, and under such a spatial structure a nonparametric kernel method is suggested to estimate a spatial conditional regression. Under mild regularities, sufficient conditions are derived to ensure the weak consistency as well as the convergence rates for the kernel estimator. Of interest are the following: (1) All the conditions imposed on the mixing coefficient and the bandwidth are simple; (2) Differently from the time series setting, the bandwidth is found to be dependent on the dimension of the site in space as well; (3) For weak consistency, the mixing coefficient is allowed to be unsummable and the tendency of sample size to infinity may be in different manners along different direction in space; (4) However, to have an optimal convergence rate, faster decreasing rates of mixing coefficient and the tendency of sample size to infinity along each direction are required. |
语种 | 英语 |
CSCD记录号 | CSCD:1367037 |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/53042] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.云南大学 2.中国科学院数学与系统科学研究院 |
推荐引用方式 GB/T 7714 | Lu Zudi,Chen Xing. Spatial Nonparametric Regression Estimation: Non-isotropic Case[J]. Acta Mathematicae Applicatae Sinica,2002,18(4):641-656. |
APA | Lu Zudi,&Chen Xing.(2002).Spatial Nonparametric Regression Estimation: Non-isotropic Case.Acta Mathematicae Applicatae Sinica,18(4),641-656. |
MLA | Lu Zudi,et al."Spatial Nonparametric Regression Estimation: Non-isotropic Case".Acta Mathematicae Applicatae Sinica 18.4(2002):641-656. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。