中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Forecasting container throughput of Qingdao port with a hybrid model

文献类型:期刊论文

作者Huang Anqiang2; Lai Kinkeung3; Li Yinhua4; Wang Shouyang1
刊名JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY
出版日期2015
卷号28期号:1页码:105-121
关键词PROJECTION PURSUIT REGRESSION WAVELET-BASED DETECTION FINANCIAL TIME-SERIES OUTLIER DETECTION GENETIC ALGORITHMS NOVELTY DETECTION NEURAL-NETWORKS PREDICTION Container throughput forecast genetic programming algorithm outlier processing projection pursuit regression
ISSN号1009-6124
其他题名Forecasting Container Throughput of Qingdao Port with a Hybrid Model
英文摘要This paper proposes a hybrid forecasting method to forecast container throughput of Qingdao Port. To eliminate the influence of outliers, local outlier factor (lof) is extended to detect outliers in time series, and then different dummy variables are constructed to capture the effect of outliers based on domain knowledge. Next, a hybrid forecasting model combining projection pursuit regression (PPR) and genetic programming (GP) algorithm is proposed. Finally, the hybrid model is applied to forecasting container throughput of Qingdao Port and the results show that the proposed method significantly outperforms ANN, SARIMA, and PPR models.
语种英语
CSCD记录号CSCD:5385395
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/53304]  
专题中国科学院数学与系统科学研究院
作者单位1.中国科学院数学与系统科学研究院
2.北京航空航天大学
3.伦敦城市大学
4.中国科学院
推荐引用方式
GB/T 7714
Huang Anqiang,Lai Kinkeung,Li Yinhua,et al. Forecasting container throughput of Qingdao port with a hybrid model[J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,2015,28(1):105-121.
APA Huang Anqiang,Lai Kinkeung,Li Yinhua,&Wang Shouyang.(2015).Forecasting container throughput of Qingdao port with a hybrid model.JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,28(1),105-121.
MLA Huang Anqiang,et al."Forecasting container throughput of Qingdao port with a hybrid model".JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY 28.1(2015):105-121.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。