中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Empirical likelihood inference for logistic equation with random perturbation

文献类型:期刊论文

作者Hu Xuemei2
刊名JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY
出版日期2014
卷号27期号:2页码:350-359
关键词MOMENT RESTRICTIONS Empirical likelihood ratio statistic estimating equations logistic equation with random perturbation maximum empirical likelihood estimations maximum likelihood estimation
ISSN号1009-6124
其他题名EMPIRICAL LIKELIHOOD INFERENCE FOR LOGISTIC EQUATION WITH RANDOM PERTURBATION
英文摘要Empirical likelihood (EL) combined with estimating equations (EE) provides a modern semi-parametric alternative to classical estimation techniques such as maximum likelihood estimation (MLE). This paper not only uses closed form of conditional expectation and conditional variance of Logistic equation with random perturbation to perform maximum empirical likelihood estimation (MELE) for the model parameters, but also proposes an empirical likelihood ratio statistic (ELRS) for hypotheses concerning the interesting parameter. Monte Carlo simulation results show that MELE and ELRS provide competitive performance to parametric alternatives.
资助项目[National Natural Science Foundation of China] ; [Natural Science Foundation Project of CQ CSTC] ; [National Basic Research Program of China]
语种英语
CSCD记录号CSCD:5112277
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/55020]  
专题中国科学院数学与系统科学研究院
作者单位1.北京大学
2.中国科学院数学与系统科学研究院
推荐引用方式
GB/T 7714
Hu Xuemei. Empirical likelihood inference for logistic equation with random perturbation[J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,2014,27(2):350-359.
APA Hu Xuemei.(2014).Empirical likelihood inference for logistic equation with random perturbation.JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY,27(2),350-359.
MLA Hu Xuemei."Empirical likelihood inference for logistic equation with random perturbation".JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY 27.2(2014):350-359.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。