中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Class conditional distribution alignment for domain adaptation

文献类型:期刊论文

作者Kai CAO1; Zhipeng TU1; Yang MING1
刊名控制理论与技术:英文版
出版日期2020
卷号18.0期号:1.0页码:72-80
关键词Domain adaptation distribution alignment feature cluster
ISSN号2095-6983
英文摘要In this paper,we study the problem of domain adaptation,which is a crucial ingredient in transfer learning with two domains,that is,the source domain with labeled data and the target domain with none or few labels.Domain adaptation aims to extract knowledge from the source domain to improve the performance of the learning task in the target domain.A popular approach to handle this problem is via adversarial training,which is explained by the H△H-distance theory.However,traditional adversarial network architectures just align the marginal feature distribution in the feature space.The alignment of class condition distribution is not guaranteed.Therefore,we proposed a novel method based on pseudo labels and the cluster assumption to avoid the incorrect class alignment in the feature space.The experiments demonstrate that our framework improves the accuracy on typical transfer learning tasks.
语种中文
CSCD记录号CSCD:6709874
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/56125]  
专题中国科学院数学与系统科学研究院
作者单位1.Key Lab of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences
2.中国科学院大学
推荐引用方式
GB/T 7714
Kai CAO,Zhipeng TU,Yang MING. Class conditional distribution alignment for domain adaptation[J]. 控制理论与技术:英文版,2020,18.0(1.0):72-80.
APA Kai CAO,Zhipeng TU,&Yang MING.(2020).Class conditional distribution alignment for domain adaptation.控制理论与技术:英文版,18.0(1.0),72-80.
MLA Kai CAO,et al."Class conditional distribution alignment for domain adaptation".控制理论与技术:英文版 18.0.1.0(2020):72-80.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。