Class conditional distribution alignment for domain adaptation
文献类型:期刊论文
作者 | Kai CAO1; Zhipeng TU1; Yang MING1 |
刊名 | 控制理论与技术:英文版
![]() |
出版日期 | 2020 |
卷号 | 18.0期号:1.0页码:72-80 |
关键词 | Domain adaptation distribution alignment feature cluster |
ISSN号 | 2095-6983 |
英文摘要 | In this paper,we study the problem of domain adaptation,which is a crucial ingredient in transfer learning with two domains,that is,the source domain with labeled data and the target domain with none or few labels.Domain adaptation aims to extract knowledge from the source domain to improve the performance of the learning task in the target domain.A popular approach to handle this problem is via adversarial training,which is explained by the H△H-distance theory.However,traditional adversarial network architectures just align the marginal feature distribution in the feature space.The alignment of class condition distribution is not guaranteed.Therefore,we proposed a novel method based on pseudo labels and the cluster assumption to avoid the incorrect class alignment in the feature space.The experiments demonstrate that our framework improves the accuracy on typical transfer learning tasks. |
语种 | 中文 |
CSCD记录号 | CSCD:6709874 |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/56125] ![]() |
专题 | 中国科学院数学与系统科学研究院 |
作者单位 | 1.Key Lab of Systems and Control,Academy of Mathematics and Systems Science,Chinese Academy of Sciences 2.中国科学院大学 |
推荐引用方式 GB/T 7714 | Kai CAO,Zhipeng TU,Yang MING. Class conditional distribution alignment for domain adaptation[J]. 控制理论与技术:英文版,2020,18.0(1.0):72-80. |
APA | Kai CAO,Zhipeng TU,&Yang MING.(2020).Class conditional distribution alignment for domain adaptation.控制理论与技术:英文版,18.0(1.0),72-80. |
MLA | Kai CAO,et al."Class conditional distribution alignment for domain adaptation".控制理论与技术:英文版 18.0.1.0(2020):72-80. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。