中国科学院机构知识库网格
Chinese Academy of Sciences Institutional Repositories Grid
Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations

文献类型:期刊论文

作者Flandoli, Franco1; Galeati, Lucio2; Luo, Dejun3,4
刊名JOURNAL OF EVOLUTION EQUATIONS
出版日期2020-06-19
页码34
关键词2D Euler equations Vorticity Transport noise Scaling limit 2D Navier-Stokes equations
ISSN号1424-3199
DOI10.1007/s00028-020-00592-z
英文摘要We consider a family of stochastic 2D Euler equations in vorticity form on the torus, with transport-type noises and L-2-initial data. Under a suitable scaling of the noises, we show that the solutions converge weakly to that of the deterministic 2D Navier-Stokes equations. Consequently, we deduce that the weak solutions of the stochastic 2D Euler equations are approximately unique and "weakly quenched exponential mixing."
资助项目Scuola Normale Superiore di Pisa ; National Natural Science Foundation of China[11571347] ; National Natural Science Foundation of China[11688101] ; Youth Innovation Promotion Association, CAS[2017003]
WOS研究方向Mathematics
语种英语
WOS记录号WOS:000541309100001
出版者SPRINGER BASEL AG
源URL[http://ir.amss.ac.cn/handle/2S8OKBNM/51663]  
专题应用数学研究所
通讯作者Flandoli, Franco
作者单位1.Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56124 Pisa, Italy
2.Univ Bonn, Inst Appl Math, Endenicher Allee 60, D-53115 Bonn, Germany
3.Chinese Acad Sci, Key Lab RCSDS, Acad Math & Syst Sci, Beijing 100190, Peoples R China
4.Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
推荐引用方式
GB/T 7714
Flandoli, Franco,Galeati, Lucio,Luo, Dejun. Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations[J]. JOURNAL OF EVOLUTION EQUATIONS,2020:34.
APA Flandoli, Franco,Galeati, Lucio,&Luo, Dejun.(2020).Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations.JOURNAL OF EVOLUTION EQUATIONS,34.
MLA Flandoli, Franco,et al."Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations".JOURNAL OF EVOLUTION EQUATIONS (2020):34.

入库方式: OAI收割

来源:数学与系统科学研究院

浏览0
下载0
收藏0
其他版本

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。