Thekth power expectile regression
文献类型:期刊论文
作者 | Jiang, Yingying3,4; Lin, Fuming3,5; Zhou, Yong1,2,6![]() |
刊名 | ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS
![]() |
出版日期 | 2019-12-12 |
页码 | 31 |
关键词 | Asymptotic variance Thekth power expectile Expectiles Quantiles |
ISSN号 | 0020-3157 |
DOI | 10.1007/s10463-019-00738-y |
英文摘要 | Check functions of least absolute deviation make sure quantile regression methods are robust, while squared check functions make expectiles more sensitive to the tails of distributions and more effective for the normal case than quantiles. In order to balance robustness and effectiveness, we adopt a loss function, which falls in between the above two loss functions, to introduce a new kind of expectiles and develop an asymmetric leastkth power estimation method that we call thekth power expectile regression,klarger than 1 and not larger than 2. The asymptotic properties of the corresponding estimators are provided. Simulation results show that the asymptotic efficiency of thekth power expectile regression is higher than those of the common quantile regression and expectile regression in some data cases. A primary procedure of choosing satisfactorykis presented. We finally apply our method to the real data. |
资助项目 | talent introduction project of Sichuan University of Science Engineering[2019RC10] ; Scientific research cultivation project of Sichuan University of Science Engineering[2013PY07] ; Scientific Research Fund of Shanghai University of Finance and Economics[2017110080] ; Opening Project of Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing[2018QZJ01] ; State Key Program of National Natural Science Foundation of China[71331006] ; State Key Program in the Major Research Plan of National Natural Science Foundation of China[91546202] |
WOS研究方向 | Mathematics |
语种 | 英语 |
WOS记录号 | WOS:000541639200002 |
出版者 | SPRINGER HEIDELBERG |
源URL | [http://ir.amss.ac.cn/handle/2S8OKBNM/51687] ![]() |
专题 | 应用数学研究所 |
通讯作者 | Lin, Fuming |
作者单位 | 1.East China Normal Univ, Acad Stat & Interdisciplinary Sci, Shanghai 200241, Peoples R China 2.Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China 3.Sichuan Univ Sci & Engn, Sch Math & Stat, Zigong 643000, Sichuan, Peoples R China 4.Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Sichuan, Peoples R China 5.Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai 200433, Peoples R China 6.East China Normal Univ, Sch Stat, Fac Econ & Management, Shanghai 200241, Peoples R China |
推荐引用方式 GB/T 7714 | Jiang, Yingying,Lin, Fuming,Zhou, Yong. Thekth power expectile regression[J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS,2019:31. |
APA | Jiang, Yingying,Lin, Fuming,&Zhou, Yong.(2019).Thekth power expectile regression.ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS,31. |
MLA | Jiang, Yingying,et al."Thekth power expectile regression".ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS (2019):31. |
入库方式: OAI收割
来源:数学与系统科学研究院
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。