Heck reaction prediction using a transformer model based on a transfer learning strategy
文献类型:期刊论文
作者 | Wang, Ling2; Zhang, Chengyun2; Bai, Renren1,2; Li, Jianjun2; Duan, Hongliang2,3 |
刊名 | CHEMICAL COMMUNICATIONS
![]() |
出版日期 | 2020-08-21 |
卷号 | 56期号:65页码:9368-9371 |
ISSN号 | 1359-7345 |
DOI | 10.1039/d0cc02657c |
通讯作者 | Li, Jianjun(lijianjun@zjut.edu.cn) ; Duan, Hongliang(hduan@zjut.edu.cn) |
英文摘要 | A proof-of-concept methodology for addressing small amounts of chemical data using transfer learning is presented. We demonstrate this by applying transfer learning combined with the transformer model to small-dataset Heck reaction prediction. Introducing transfer learning significantly improved the accuracy of the transformer-transfer learning model (94.9%) over that of the transformer-baseline model (66.3%). |
WOS关键词 | NEURAL-NETWORKS ; OUTCOMES |
资助项目 | National Natural Science Foundation of China[81903438] |
WOS研究方向 | Chemistry |
语种 | 英语 |
WOS记录号 | WOS:000559618600024 |
出版者 | ROYAL SOC CHEMISTRY |
源URL | [http://119.78.100.183/handle/2S10ELR8/292346] ![]() |
专题 | 新药研究国家重点实验室 |
通讯作者 | Li, Jianjun; Duan, Hongliang |
作者单位 | 1.Hangzhou Normal Univ, Sch Med, Hangzhou 311121, Peoples R China 2.Zhejiang Univ Technol, Coll Pharmaceut Sci, Artificial Intelligent Aided Drug Discovery Lab, Hangzhou 310014, Peoples R China 3.Chinese Acad Sci, Shanghai Inst Mat Med SIMM, State Key Lab Drug Res, Shanghai 201203, Peoples R China |
推荐引用方式 GB/T 7714 | Wang, Ling,Zhang, Chengyun,Bai, Renren,et al. Heck reaction prediction using a transformer model based on a transfer learning strategy[J]. CHEMICAL COMMUNICATIONS,2020,56(65):9368-9371. |
APA | Wang, Ling,Zhang, Chengyun,Bai, Renren,Li, Jianjun,&Duan, Hongliang.(2020).Heck reaction prediction using a transformer model based on a transfer learning strategy.CHEMICAL COMMUNICATIONS,56(65),9368-9371. |
MLA | Wang, Ling,et al."Heck reaction prediction using a transformer model based on a transfer learning strategy".CHEMICAL COMMUNICATIONS 56.65(2020):9368-9371. |
入库方式: OAI收割
来源:上海药物研究所
浏览0
下载0
收藏0
其他版本
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。